【摘 要】
:
锐钛矿相TiO2是一种结构稳定、无毒、光催化活性和亲水性很强的半导体,在环境治理、绿色能源、太阳能电池等重大领域被广泛应用。针对锐钛矿相TiO2的禁带宽度大且光量子效率低问题,我们利用第一性原理计算软件,基于密度泛函理论方法系统研究VIB、VIA族原子共掺杂TiO2的光电性能。本文主要探究调制带隙、改善光吸收的基本方法和机理,进而增加光催化效率。具体地,针对掺杂结构的形成能、几何结构、电子结构和光
论文部分内容阅读
锐钛矿相TiO2是一种结构稳定、无毒、光催化活性和亲水性很强的半导体,在环境治理、绿色能源、太阳能电池等重大领域被广泛应用。针对锐钛矿相TiO2的禁带宽度大且光量子效率低问题,我们利用第一性原理计算软件,基于密度泛函理论方法系统研究VIB、VIA族原子共掺杂TiO2的光电性能。本文主要探究调制带隙、改善光吸收的基本方法和机理,进而增加光催化效率。具体地,针对掺杂结构的形成能、几何结构、电子结构和光学特性展开了研究,主要研究成果如下:(1)VIA族原子单掺杂后TiO2的体积随着VIA族原子序数增加而依次膨胀明显。VIA原子均在价带顶引入了杂质能级,分别主要由S_3p、Se_4p、Te_5p和O_2p轨道杂化而成。禁带宽度随着VIA族原子的序数增加而减小,光的吸收范围也相应扩大至可见光区域,提高了对光的利用率,从而提高了光的催化活性。(2)VIB单掺杂TiO2结构中,VIB原子的引入导致导带底出现了杂质能级,这些杂质能级分别由Cr_3d、Mo_4d、W_5d和Ti_3d轨道杂化而成。禁带宽度随着掺杂原子的序数增大而增大,W@TiO2的禁带宽度比纯TiO2的大。杂质能级的存在是光吸收范围扩展到红外光区域的原因,提高了对光的利用率,提高了TiO2的光催化活性。在VIB单掺杂TiO2结构中,Cr@TiO2的光吸收能力最好。(3)W、Mo和Cr分别与VIA族原子共掺杂TiO2后的体积膨胀随着VIA族原子的序数增加而依次明显。Cr_3d、Mo_4d以及W_5d电子态在导带底形成了杂质态,VIA族原子分别以S_3p、Se_4p、Te_5p电子态在价带顶引入了杂质态。禁带宽度随着VIA原子序数的增加而依次减小。其中Cr共掺在200 nm~430 nm区域,光吸收能力随着VIA族原子序数增加而依次增强,W、Mo的共掺结构在360 nm~500 nm区域,它们的光吸收能力随着VIA族原子的序数增加而增强。在360 nm~500 nm区域,VIB族原子与Te各掺杂结构吸收光的能力大小:WTe@TiO2>Mo Te@TiO2>Cr Te@TiO2,随着VIB族原子的序数增加而增强。各个共掺杂结构在350 nm~800 nm波长范围内,WTe@TiO2结构的红移最明显,是这些掺杂结构中吸收能力最好的表现。
其他文献
煤炭地下气化是将煤炭资源原位转化为可燃性气体过程,是清洁、安全、高效的煤炭利用技术。煤炭地下气化提高了煤炭资源的利用率,减少了对环境的污染与破坏,具有显著的经济效益和社会效益。由于煤炭地下气化过程的复杂性和不可见性,实现稳定性生产和商业化开发仍需进一步研究与完善。煤层温度场的动态演变和燃空区扩展是煤炭地下气化工艺稳定性控制关键。本研究选用蒙东褐煤为实验用煤,对煤层热解温度场演变及燃空区扩展展开研究
汽车保有量的增加,为人们生活带来了一定的方便,但也同时带来了一些负面影响。燃油车的增多加速了对石油资源的消耗,汽车尾气中含有对人体有害的污染排放物。寻找合适的办法减轻能源短缺和环境污染所带来的压力就显得越发紧迫和必要。混合动力汽车是传统燃油汽车走向纯电动汽车的一种过渡车型,其存在具有一定的历史意义。如何做到该类型汽车的最优能效管理,是行业关注的重点。论文依此为背景展开对混合动力汽车能量管理策略的研
光纤光栅自面世以来,便受到众多的科研工作者的关注,被广泛应用各种物理量(折射率、温度、应变、弯曲、振动等)的测量,随着研究的深入其在生物传感领域也获得进一步的应用。与传统的电化学生物传感器相比,光纤光栅生物传感器具有微型化、紧凑化、高灵敏、免标记、抗电磁干扰、可远程监测等优点。在众多的光纤光栅生物传感器中,基于色散拐点长周期光纤光栅(DTP-LPFG)制作的生物传感器以其优异传感特性,常被用于生物
随着工业化的不断发展,现在的水质污染问题日趋严重,其中水质问题中重金属污染占很大一部分比例,这些重金属离子不仅会造成生态系统的破坏,而且它们通过水摄入人体内,对于人体健康造成重大危害,对于重金属离子检测的传感器研发显得极为重要,因此,本文制作了三种马赫-曾德传感光纤传感器,实现对镉离子、铜离子检测。本研究论文主要采用的基本理论是模态干涉原理,由单模光纤、无芯光纤、光子晶体光纤、三芯光纤这四种光纤熔
随着国民经济、国家制造业的快速发展,智能制造、无人化工厂应运而生。在实际加工生产中,因为不能实时掌握数控机床的运行状态,这为智能制造带来了阻碍。本文围绕数据采集、信号特征提取、主轴振动状态监测以及表面质量预测分类四方面展开研究。采用了基于改进集合经验模态分解与局部切空间排列算法相结合的研究方法,并建立了主轴振动状态监测以及工件表面质量预测分类模型,实现了主轴状态监测和表面质量预测分类功能。首先,研
随着光纤传感技术的快速发展,新型光纤传感器在工业、军事和生活中各个方面均得到广泛的应用,成为传感器领域重要的一员。光纤传感器具有结构简单紧凑、耐腐蚀、抗电磁干扰和灵敏度高等其他传感器无法代替的优势,因此被广泛的研究。同时,随着通信技术的发展,普通的单模光纤已经无法满足对信号传输容量的要求,然而多芯光纤的研发和制作很好的满足了通信技术对传输容量的要求。并且多芯光纤具有特殊的结构,在研制传感器的过程中
在当今电子科技、人工智能飞速发展的大环境下,电子元器件的微型化、集成化、大功率已经成为了时代发展的主流。BGA焊点在长期服役过程中,必将承受高频率、急剧的温度变化,导致焊点出现热疲劳可靠性问题。研究发现Co-P UBM因其优异的扩散阻挡性、可接受的润湿性及优异的抗电迁移性能,有望作为传统Cu UBM的替代品,因此作为新型UBM互连模式的Co-P/Solder BGA焊点在快速热疲劳下的界面反应及可
近年来随着高校招生扩招,以班级为单位的学生数量不断上涨,大学授课老师管理课堂、教学授课工作日益繁重。随着智慧化校园的普及,通过深度学习检测学生在教室中的异常行为是提高课堂效率的重要措施之一。但视频监控系统现有的功能仍存在诸多问题:有效检测识别度低、异常行为预警反馈慢、不具有完善的统计报告等。鉴于此,设计并实现一套基于计算机视觉的学生异常行为识别系统,即将教室监控所拍摄的学生学习状态传给计算机,利用
电控机械式自动变速器(Automatic Mechanical Transmission)传动效率高且制造成本低廉,但换档过程存在动力中断,驾驶体验较差,基于P3构型插电式混合动力汽车(Plugin Hybrid Electric Vehicle),利用电机辅助作用就能解决换档动力中断的问题,提升驾驶员舒适性。本文基于AMT双电机混合动力系统,结合电池荷电状态变化(State Of Charge)
深度学习在图像识别领域具有广泛的应用,然而最近的研究表明其极易受到对抗样本攻击,导致性能严重下降。对抗样本的一个重要特点是跨模型迁移性,即针对已知模型生成的对抗样本能以极大概率欺骗另一个未知模型。因此,在无法访问目标系统时攻击者可以利用该特性在替代模型上制作对抗样本来进行恶意攻击。探索对抗样本的迁移性特点以及生成具有更强迁移能力的对抗样本不仅能衡量模型的鲁棒性,也能对模型的安全防御给予针对性指导。