丁腈橡胶复合材料摩擦磨损性能的研究

来源 :青岛科技大学 | 被引量 : 0次 | 上传用户:dufuyan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
丁腈橡胶(NBR)具备优良的耐热性、耐油性、耐磨性和耐腐蚀性,普遍地应用于现代航天航空、汽车、石油化工和国防工业等,但随着经济和科学技术的进步,对丁腈橡胶复合材料的力学性能,化学稳定性和摩擦磨损性能等提出了越来越高的要求。本文以提高丁腈橡胶的摩擦磨损性能为目的,在NBR基体中添加了碳化硅(SiC)并制备NBR复合材料。研究了SiC含量对NBR复合材料硫化特性、力学性能、耐油性能、粘弹性和摩擦磨损性能等性能的影响规律,并分析了复合材料的磨损机制。同时采取硅烷偶联剂对SiC进行改性,还研究了硅烷偶联剂的种类以及固体润滑剂的种类对NBR/SiC复合材料摩擦磨损性能的影响。研究表明:SiC的加入对NBR复合材料力学性能影响不大;SiC的加入可以提高NBR复合材料的耐老化性能和耐油性能;在实验温度的范围内,SiC的加入可降低复合材料的损耗因子(tanδ),但对复合材料储能模量(E’)影响较小;NBR复合材料的摩擦系数和磨损量随着SiC用量的增大而增大;当SiC用量为5份时,复合材料摩擦磨损性能最好。在摩擦过程中,随着转速的增大,复合材料摩擦系数减小,磨损量增大;随着载荷的增大,复合材料的摩擦系数减小,但磨损量增大;复合材料的磨损形式主要为磨粒磨损和粘着磨损。用硅烷偶联剂对SiC进行改性后,NBR/SiC复合材料的硫化速度、焦烧时间t10以及工艺正硫化时间变化较小,但最高转矩有所增大。添加经硅烷偶联剂改性后SiC的NBR复合材料的物理机械性能有所提高,但不同的硅烷偶联剂对NBR/SiC复合材料的物理机械性能影响不同,硅烷偶联剂A-151改性的NBR/SiC复合材料的拉伸强度较好。在相同条件下,改性NBR/SiC复合材料的摩擦磨损性能优于未改性NBR/SiC复合材料;经硅烷偶联剂A-171改性后的NBR/SiC复合材料具有较低的摩擦系数和体积磨损,且磨损表面的犁沟和舌状物较少,较为光滑平整。固体润滑剂的加入对NBR/SiC复合材料的硫化时间和硫化速率影响不大;石墨烯的加入使NBR/SiC复合材料的最高转矩明显增大。固体润滑剂的加入对NBR/SiC复合材料力学性能影响略有不同,石墨烯的加入使NBR复合材料的硬度、定伸应力都增大,拉断伸长率降低,撕裂强度提高;石墨和二硫化钼(Mo S2)的加入使复合材料的撕裂强度降低;聚四氟乙烯(PTFE)由于与橡胶的相容性较差,使复合材料的定伸应力和撕裂强度均降低。在摩擦过程中,固体润滑剂的加入降低了NBR/SiC复合材料的摩擦系数和磨损量,在干摩擦状态下,PTFE对复合材料摩擦磨损性能的改善较小;石墨烯的加入对复合材料摩擦磨损性能的改善最好,复合材料具有较低的摩擦系数和较好的耐磨性,磨损表面比较光滑平整,磨损形式以磨粒磨损为主。
其他文献
学位
纤维素纳米晶体(CNC)由于其卓越的可再生性,生物降解性,机械强度及独特的液晶行为,在纳米填料、生物医疗和水处理等领域被广泛应用。其中最为引人注目的是利用CNC独特的手性液晶组装行为制备彩色膜和具有手性向列相结构的复合膜。目前为止,围绕CNC的液晶行为研究大多集中在棒状CNC。近年来,人们成功制备了球形CNC,即纤维素纳米球(CNS)。针对这种新形态的纳米晶,其是否也能表现自发的液晶组装行为,晶体
视觉多目标跟踪是计算机视觉中重要的研究方向,在无人驾驶、智能监控等领域中有着重要的应用价值。目前深度回归网络的多目标跟踪便于利用多层深度特征,且对尺度不敏感而得到广泛关注。然而由于目标受到姿态变化、相似外观、频繁遮挡以及短时间进出等影响,使得复杂场景的多目标跟踪仍然面临许多问题。此外,基于目标检测的多目标跟踪算法,对目标检测器有着很高的要求,但复杂场景下的多目标检测性能仍有待提升。针对以上问题,本
研究背景和目的肠上皮细胞是肠黏膜屏障和免疫稳态的重要调控者,肠屏障功能障碍和免疫反应失调是溃疡性结肠炎发病的两大关键因素。肠屏障功能破坏导致肠腔内病原菌接触黏膜下免疫细胞,诱发过度的免疫反应,导致肠道不可控的炎症。肠屏障功能的正常发挥依赖于肠上皮细胞间连接,尤其是紧密连接。除屏障功能外,肠上皮还具有免疫调控功能。在应对炎症因子或病原菌刺激时,肠上皮细胞能够分泌细胞因子和趋化因子介导肠道微生物和宿主
地下工程常会遭遇超预期的软弱夹层带,尤其夹层含水时,强度进一步弱化,对工程的稳定性造成不良影响。本文在研制专用模型试验系统的基础上,采用模型试验方法对含水软弱夹层地下洞室进行研究,通过开挖试验以及长时间蠕变试验,模拟地下工程的开挖和运营阶段,得到夹层含水对地下洞室稳定性的影响,并用数值模拟加以验证。为保证长时蠕变试验的稳定运行,论文研制了由模型架、加载系统、测量系统组成的新型杠杆式物理模型试验系统
过共晶铝硅合金因具有耐磨性好、热膨胀系数低、比重小等优点,在汽车工业领域,如活塞、发动机壳的制造上应用广泛。但是,未经变质的过共晶铝硅合金组织中存在大量的五瓣星状、板块状的初晶硅和长针状共晶硅,一定程度割裂了Al合金基体,削弱了合金的综合力学性能,制约了过共晶铝硅合金在工业上的应用。因此,科研工作者们多年来致力于采用合理手段对过共晶铝硅合金的硅相组织进行变质细化来提高合金的使用性能。本文主要利用金
文中针对深基坑工程施工变形监测工作的重要性及其特点进行了分析,并提出了相应的监测技术控制措施。
"英语教学法"是高等师范院校英语专业的主干课程之一。在信息技术的演进与课程整合不断深入的背景下,如何对信息技术做出合适的反应,已成为课程改革的一大关键。通过列举高等师范院校英语专业的主干课程之一"英语教学法"目前存在的若干问题,结合信息技术背景对该课程的教学模式改革进行了探讨,提出了对策性建议和实施路径。
纳米酶是新一代具有模拟酶性质的纳米材料。近年来,由于其可控的催化活性、简便的合成方法以及良好的稳定性等优点而得到广泛地研究与应用。可变价离子介导的类芬顿反应是纳米酶活性的关键,铜、铁、钴、铈、锰等金属基纳米材料被发现具有过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、氧化酶(OXD)等模拟酶活性。铜基过氧化物酶在细胞或者细菌中催化双氧水(H2O2)分解所产生的致命的活性氧(R
位于南极菲尔德斯半岛的企鹅岛,其东、西两侧具有明显不同的生态特征。本研究针对从企鹅岛东、西两侧土壤采集的10份样品(其中包括2份潮间带沉积物样品),采用选择性可培养法和基于16S rRNA基因与氮循环细菌关键功能基因(硝化基因nxr A、反硝化基因nirS、氨氧化基因amoA、固氮基因nifH)的高通量测序法,对其进行了包括菌株分离、计数、形态观察、产酶活性、氮循环功能活性、物种类群组成等内容的多