论文部分内容阅读
研究在现代农业产业技术体系建设专项资金项目(课题编号:GARS–04)和国家重点研发计划项目(课题编号:2018YFD0201004)的支持下,针对免耕覆秸种植模式下秸秆残茬全量覆盖还田导致播种期有效积温低、病虫害率增加和秸秆残茬资源利用率低等问题,开展了一种基于2BMFJ系列免耕播种机侧向清秸作业模式的秸秆残茬还田同步回收调比技术相关研究,旨在通过该技术改善土壤环境,以减少化肥、农药使用。通过研究清秸装置侧向抛撒秸秆残茬的工作原理与特点,利用秸秆残茬抛撒时具有的机械能,提出一种秸秆残茬还田同步回收调比技术方法与配套装置,采用理论分析、数字化虚拟样机设计与建模、计算机模拟仿真分析、高速摄像技术和试验研究等方法,对技术的关键点进行了深入研究,主要研究内容和结果包括:(1)玉米原茬地免耕精播覆秸机侧向秸秆残茬还田同步回收调比技术试验装置平台构建。对比了2BMFJ系列免耕播种机刚齿与弹齿式清秸装置的作业方式与原理,提出了一种平台构建方案,通过理论分析与数字化建模技术对清秸装置关键结构和零部件进行分析与设计,并结合三因素三水平正交试验法,探究验装置平台侧向抛撒秸秆残茬时,各参数对清秸质量和秸秆残茬抛撒状态的影响规律,试验结果表明:各因素对秸秆残茬清除率影响主次顺序为转速、作业速度、清秸弹齿偏角,其中转速与作业速度对秸秆残茬清除率影响极显著,清秸弹齿偏角影响不显著;各因素对秸秆残茬抛撒特性影响主次顺序为清秸弹齿偏角、转速、作业速度,其中清秸弹齿偏角和转速对覆秸宽度影响显著,作业速度影响不显著。(2)基于高速摄像技术的秸秆残茬动力学模型建立与分析。首先收集与整理东北地区标准垄的玉米原茬地秸秆残茬,对其基本物理参数进行测定,在此基础上对秸秆残茬在清秸弹齿上的运动过程和秸秆残茬脱离清秸弹齿后的侧向抛撒过程进行了深入研究,建立了秸秆残茬动力学模型,由模型可知:当清秸弹齿侧向抛撒秸秆残茬时,靠近齿杆端部秸秆残茬向外侧滑动,最终沿弹齿切线方向抛出,靠近内侧秸秆残茬与清秸弹齿保持相对静止,该分界点与清秸弹齿偏角、转速和清秸弹齿与秸秆残茬间的动摩擦因素有关。秸秆残茬脱离清秸弹齿后做抛体运动,在脱离瞬间,秸秆残茬受清秸弹齿绕轴旋转产生的离心力和清秸装置内部气流共同作用,对秸秆残茬在空中的抛撒过程进行建模分析,结合高速摄像技术与三因素五水平二次回归中心组合试验方法,对秸秆残茬侧向抛撒过程动力学模型进行修正。最后将修正的模型利用Matlab绘制秸秆残茬运动轨迹,并对秸秆残茬空间分布规律进行可视化处理与量化分析。根据秸秆残茬分布规律可看出:秸秆残茬抛撒高度随清秸弹齿绕轴转速的增加而增加;且过大的清秸弹齿偏角易造成秸秆残茬不便于脱离齿杆,回带到种床,降低清秸质量。根据秸秆残茬空间分布密度云图可以看出:在抛撒初期,大部分秸秆残茬都处于下侧,随抛撒过程的进行,秸秆残茬纵向高度逐渐增加,且空间纵向分布差异也随之显著。(3)秸秆残茬还田同步回收调比装置设计。基于秸秆残茬抛撒特性与分布规律,提出一种秸秆残茬还田同步回收调比技术方法与配套装置,利用秸秆残茬侧向抛撒时具有的机械能将部分秸秆残茬借势回收至回收箱内,设计一种秸秆残茬回收同步抛撒调控挡板,通过改变回收口面积调节秸秆残茬分流比例。利用模块化设计对装置各部分结构进行深入分析,在秸秆残茬空间分布云图的研究基础上,探究在抛撒调控挡板偏角和回收口面积不同参数组合下的秸秆残茬覆盖还田比例,在满足秸秆残茬回收比例不小于50%时,选取抛撒调控挡板偏角为45°;在不降低现有清秸装置作业质量的基础上,设计一种多连杆角度调控机构,通过理论建模与软件动态仿真分析探究该结构各部件参数对清秸弹齿偏角的影响规律;基于最速降线原理对抛撒调控挡板上的导流板曲率进行分析,构建了考虑摩擦阻力的最速降线模型,以此为基础对导流板进行设计,完成了秸秆残茬还田同步回收调比装置的初步设计。(4)基于计算机模拟仿真技术的秸秆残茬还田同步回收调比装置作业性能参数影响分析。通过计算机模拟仿真技术对清秸装置内部的流场特性、作业时清秸弹齿力学特性和秸秆残茬的抛撒特性进行分析,首先建立了清秸装置CFD数值计算模型,对其内部的流场压力与空气流动特性进行了相关研究。研究结果表明,在气压分布方面,随着清秸弹齿的运动,在清秸弹齿转动轴底部、抛撒调控挡板的回收口处产生低压区,在抛撒调控挡板下侧和清秸装置前方产生高压区,在空气流动方面,一部分空气随着清秸弹齿绕轴转动,另一部分通过抛撒调控挡板回收口流出,其余的空气在抛撒调控挡板影响下绕其表面流动。在此基础上探究清秸弹齿绕轴转速、作业速度、清秸弹齿偏角3个因素对清秸装置内部流场压力与空气流动特性的影响。研究结果表明,抛撒调控挡板回收口处空气流动速度在不同位置差异性较大,差异性主要受清秸弹齿绕轴转速和作业速度影响。通过离散元仿真分析对清秸弹齿切削土壤过程进行研究,结果表明,随着清秸弹齿运动,入土阻力呈现先增加后稳定最后递减的变化趋势。选取入土深度、机具作业速度、清秸弹齿作业速度为试验因素,通过正交试验方法探究各试验因素对切削载荷的影响规律。结果表明,各因素对清秸弹齿切削土壤载荷均值的影响主次顺序为:入土深度、清秸弹齿作业速度、机具作业速度。最后通过离散元仿真软件对清秸装置抛撒秸秆残茬的过程进行仿真分析,当抛撒调控挡板位置不变时,通过抛撒调控挡板端部回折角调整秸秆残茬抛撒至种床的覆盖宽度。仿真结果表明:秸秆残茬抛撒宽度与端部回折角呈现正相关变化趋势,当考虑设计对象为垄距65 cm配套的2行清秸装置,选取端部回折角为150°。(5)秸秆残茬还田同步回收调比装置田间试验与环境因素影响分析。通过田间试验探究秸秆残茬覆盖还田比例的相关参数影响规律,采用四因素五水平二次回归正交中心组合试验方法,研究得到不同秸秆残茬还田比例对应的最优参数组合。试验结果表明,基于侧向清秸免耕覆秸机械化种植模式提出的秸秆残茬还田同步回收调比装置,能够实现秸秆残茬覆盖还田比例的参数可调控。为了验证模型准确性,分别以理想秸秆残茬覆盖还田比例50%和70%为例,探究秸秆残茬还田调比装置对应的结构和作业参数。当参数组合为:清秸弹齿偏角21°、回收口面积1120 cm~2、作业速度5 km/h、秸秆残茬覆盖量1.1 kg/m~2时,秸秆残茬覆盖还田比例为52.3%;当参数组合为:清秸弹齿偏角21°、回收口面积890 cm~2、作业速度8 km/h、秸秆残茬覆盖量1.1 kg/m~2时,秸秆残茬覆盖还田比例为71.9%。对优化后的秸秆残茬还田同步回收调比装置进行环境因素影响分析,以环境自然风为单因素变量探究其对作业质量的影响规律。试验结果表明:不同环境风速与风向对秸秆残茬覆盖还田比例误差有显著影响,其中,对于环境风速,当秸秆残茬还田同步回收调比装置自南向北作业时,在风速不超过7.2 m/s条件下,秸秆残茬覆盖还田比例误差随环境自然风速呈增加的变化趋势,当自北向南作业时,则主要呈现先减小后增加的变化趋势,对于环境风向,当秸秆残茬还田同步回收调比装置自南向北作业时,秸秆残茬覆盖还田比例误差随环境自然风向呈先减小后增加的变化趋势,当自北向南作业时,则主要呈现先增加后减小的变化趋势。