等离子球磨粉体细化机制探索及片状吸波铁粉制备

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:zqdxtushuguan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高能球磨是最常用的一种实现粉体细化和机械合金化的方法,但传统的高能球磨法只有单一的机械能输入,存在效率低、能耗高、粉末污染等问题。等离子球磨是解决上述问题的一种有效途径。本文首先综述了高能球磨技术和等离子球磨技术的原理及应用,然后调控等离子球磨工艺,制备了片状吸波铁粉,并研究了放电参数与球磨参数对粉末形貌的影响。最后,探讨了等离子球磨过程中片状铁粉的形成机理。研究发现,在常规的放电参数下,本研究采用装置的等离子体的电子温度在0.6~3.2e V,电子密度为1019~1021/m~3。放电的能量可使Sn、Zn、Al、Fe等金属粉末发生不同程度的熔融或烧结,表面熔融层深约几十纳米,由表层、次表层到心部还形成一定的温差而产生热应力。经放电1 h后,Al颗粒内部的温度范围在130~166℃,热应力最大约82 MPa。Fe颗粒内部的温度范围在41~95℃,热应力最大约140 MPa。SEM和XRD的结果表明,利用放电的热效应,等离子球磨6 h可得到片径在4~10μm、平均晶粒尺寸约18 nm的片状还原铁粉,等离子球磨1 h可形成中位径约9.5μm、平均厚度约0.6μm、平均晶粒尺寸约9 nm的片状羰基铁粉。与普通球磨相比,等离子球磨制备的片状羰基铁粉径厚比大、形状各向异性强,导致其吸波性能得到了改善。制成同轴样品后,采用模拟厚度法测得其反射损耗最大达到-25 d B,在13.6~16.7 GHz频率范围内的反射损耗均低于-10.0 d B,频带宽度约3 GHz。采用数值模拟方法对等离子球磨的强度进行表征和计算,球磨时磨球的冲击力在20~200 N,球磨铁粉时的接触应力在900~8000 MPa,碰撞频率在10~100 s-1,碰撞持续时间约10μs。放电持续时间约100 ns,单个放电周期约60μs。采用“加热-微锻”模型可较好描述等离子球磨过程中片状羰基铁粉的形成,球磨冲击力使粉末发生微锻,放电加热则使铁粉表层发生熔融,整体的宏观温度在330~470℃。粉末的屈服应力降低,加工硬化的程度减小,因而球状Fe粉容易延展成片径更大、厚度更薄的片状粉末。
其他文献
随着计算机科学、自动化控制、传感器技术等学科的迅速发展,机器人技术已经在日常生活和生产中得到广泛的应用。遥操作机器人作为机器人领域的分支,近年来因其具备远程操作、危险环境作业的优点得到了学术界和工业界的青睐。随着遥操作任务越来越复杂,人们对遥操作机器人的操作安全性和操作性能提出了更高的要求。然而当下的遥操作机器人依旧存在着安全性和精准性不足、人机交互能力弱等问题,导致其在多方面应用受限。本文结合当
人造压合板材是定制家具产品的主要材料,拥有丰富的颜色和花纹,其封边工序容易产生崩缺、开胶等形状多样、大小不一的缺陷。现有的检测方法泛化能力不足,抗干扰能力较弱,且没有可适应多种板材和缺陷的通用方法。因此,本文针对现有检测系统和方法的不足,研究基于深度学习的新型板材封边缺陷检测系统和方法。论文的主要工作包括:(1)设计了以反光镜作为辅助工具,平面图像采集和立体特征测量相结合的采集系统,作为机器视觉检
以插入式电动汽车(PEV)为代表的可再生能源汽车,有利于减少环境污染,改善能源结构。但因PEV充电负荷具有随机波动性,其高渗透率接入社区微电网将让经典负荷预测模型和确定性能量管理方法难以适应,亟需可以适应其高渗透率接入的充电负荷建模方法和能量管理方法。因此,本文对高渗透率PEV接入社区微电网的随机充电负荷建模方法及其能量管理策略展开探讨。首先,本文分别以正态分布模型拟合PEV起始充电时刻,对数正态
陶瓷在金属表面作为防护涂层时具有优异的耐高温、耐腐蚀性能,陶瓷涂层在高温、高湿情况下的表现更为显著,近年来,金属表面陶瓷涂层的研究与应用日益获得工业界的关注。为了拓宽304不锈钢板材的使用温度范围,本文针对在304不锈钢基板表面的耐高温防腐涂层开展了系列研究,设计制备一种双层的陶瓷涂层:底漆采用环氧改性硅树脂和羟基硅树脂增强高温附着力,面漆采用溶胶-凝胶法制备的增强涂层提高硬度与耐腐蚀性能。论文主
中国不断推进的城市化进程使得现有城市内建设用地更为紧张,同时不断增长的城市人口也带来了对公共文化设施使用的巨大需求,针对这种情况,近二十年来我国兴建起不少“多馆合一”类文化建筑综合体,其意在通过多馆的集中建设集中运营,达到高效使用城市文化资源的目的。但因缺乏相关设计策略的探讨,此类综合体往往在设计中呈现出有如“大而无当”、“貌合神离”等问题,这不仅对现有城市风貌产生影响,更对城市空间资源、城市文化
随着臭氧层的破坏,紫外辐射日益严重,导致皮肤晒红晒伤、加速衰老,影响人体健康,因此防晒护肤刻不容缓。木质素在植物中的含量仅次于纤维素,是自然界储量最丰富的芳香聚合物生物质。天然的芳香骨架和大分子结构赋予木质素良好的紫外线吸收和光稳定性能。分子中酚羟基能够清除自由基,赋予木质素优异的抗氧化性能。同时,木质素生物相容性好,是制备绿色防晒剂的理想选择。但是,木质素由于共轭结构小、无序聚集对长波紫外线(U
台风过境会引起所经海域海洋环境要素场产生剧烈的响应过程。本文通过对2015年10号台风“莲花”引起的南海东北部上层海洋响应的观测分析和数值模拟,从热力学和动力学角度研究了台风期间的响应过程。通过观测分析,发现在台风下垫面由陆地转变为海洋(台风从吕宋岛离岸)和海洋转变为陆地(台风从粤东沿岸登陆)后,出现两次移动路径的明显偏转。台风引起的海表降温有两个阶段:第一阶段以台风经过时中心吸热(海表失热每秒可
随着能源需求的日益增长和环境污染问题的日益严峻,可充电电池已然引起广泛关注。其中,锂离子电池因其能量密度高,稳定性好,在商业上已获得巨大的成功。然而,锂资源的匮乏和成本的高昂限制了其未来进一步的发展。因此,寻找廉价、资源丰富的替代品成为当务之急。钾和钠具有与锂相近的氧化还原电位,但价格低廉,自然界储量丰富,有望替代锂离子,成为新的碱金属电池材料,目前已成为研究新热点。其中,寻找与之相适应的电极材料
电力电容器及其串联电抗器是电网中重要的无功补偿设备和滤波装置,被广泛应用于各个电压等级的配电网中。近年来,随着非线性用电设备的增多,配电网中谐波污染日趋严重,谐波对电容器组造成的不良后果已越来越不容忽视。因此建立准确有效的谐波干扰下电容器和电抗器的仿真模型,并针对其损坏机理开展多物理场研究,能够为电容器组的绝缘设计、结构优化以及寿命预估等方面提供参考,对改善电力系统中电容器组设备的运行状况有着重要
氢是一种清洁、高效的能源载体,有望在未来清洁能源经济中扮演重要角色,但氢能的规模化产业应用面临着高效、安全氢储运这一关键技术难题。数十年来,各国学者围绕多种类型的储氢材料开展了大量研究,但迄今尚未发现可在温和温度下高容量、快速充/放氢的可逆储氢材料。近年来,结合可控放氢与氢化物再生的化学储氢技术为突破储氢“瓶颈”提供了契机。在多种备选材料中,水合肼(N2H4·H2O)是一种具有高储氢密度、较低廉材