论文部分内容阅读
本论文包含两个方面的内容:第一部分设计合成了氮杂环烷烃取代的水杨醛亚胺类配体和膦类配体及其相应的Ni(II),Cr(III)配合物,并考察了配合物在催化乙烯齐聚反应中的催化活性;第二部分设计合成了16种不同类型的水杨醛亚胺配体及其相应的Pd(II)配合物,依次考察了配合物在催化Suzuki和Heck碳碳偶联反应中的催化性能。在对乙烯齐聚反应催化剂的研究过程中,我们设计合成了氮杂环烷烃(吗啉,哌啶,四氢吡咯,N-甲基哌嗪)取代的水杨醛亚胺类,P-P、P-O-P、P-S-P、P-N-P、双膦类和P-N-O、P-N-N膦胺类10个配体,分别与Ni(II)和Cr(III)进行络合得到相应的配合物,配体及配合物的组成和结构经由红外光谱,质谱,核磁共振,元素分析及X-射线单晶衍射等方法得到了验证。将所合成的配合物应用于乙烯齐聚的催化反应中,探讨了反应条件(溶剂,反应时间,反应温度,助催化剂的用量)对反应结果的影响以及中心金属、配体结构与催化剂活性的关系。结果表明:在3.0Mpa的乙烯压力下,以甲苯作溶剂,反应温度40℃,助催化剂MAO活化下,水杨醛亚胺类Ni(II)和Cr(III)催化剂普遍具有中等的催化性能,其中5-叔丁基-3-(N-甲基哌嗪-甲基)水杨醛亚胺氯化铬配合物表现出最高的催化活性,达2.97×104 g mol-1 (Cat.) h-1。相同条件下,膦类Ni(II)、Cr(III)系列催化剂则在较少助催化剂MAO的作用下,显示了更高的催化活性和对产物烯烃更好的单一选择性,其中双二苯基膦乙烷氯化镍配合物催化活性为1.48×105 g mol-1 (Cat.) h-1,且产物中己烯含量高达95.4%。在Suzuki/Heck碳碳偶联催化反应的研究过程中,我们设计合成了烷基取代的水杨醛苯基亚胺、烷基取代的水杨醛吡啶亚胺以及胺基取代的水杨醛苯基亚胺三大类16种配体并且分别与PdCl2(CH3CN)2络合得到相应的Pd(II)配合物,通过红外光谱,核磁共振,元素分析及X-射线单晶衍射等方法对其依次进行了表征。将此系列配合物应用到碳碳偶联的催化反应中,全面考察了反应条件、配体结构与其催化活性之间的关系。在Suzuki偶联反应中,首先尝试了溶剂,碱类,反应温度和催化剂的用量对反应结果的影响,从而确定了最佳反应条件,然后将水杨醛亚胺类Pd(II)催化剂应用于偶联反应,研究了取代基的电子和空间效应对催化剂催化活性的影响。通过对催化剂的筛选,确定了活性最高的Pd(II)催化剂,并将其应用到各种氯代芳烃与苯硼酸的Suzuki偶联反应中,进而考察不同反应底物对催化体系的适应性。结果表明:110℃溶剂DMF中,在碱K2CO3的作用下,水杨醛亚胺类Pd(II)系列催化剂对缺电子的氯代芳烃显示了非常好的催化效果,而对于富电子的氯代芳烃其催化效果一般。其中胺基取代的水杨醛亚胺氯化钯系列配合物催化缺电子的氯代芳烃偶联,产物产率达95%以上。对Heck偶联反应的研究,我们首先确定了溶剂(DMF),碱(K2CO3),反应温度(110℃)等反应条件,然后将最优水杨醛亚胺Pd(II)催化剂应用到催化溴代芳烃与苯乙烯或丙烯酸正丁酯的偶联反应中,同样发现催化剂对缺电子的芳烃有着很好的催化效果,催化产率达95%以上。此后,我们扩充反应底物,分别对氯苄和溴苄进行了Suzuki和Heck偶联反应的尝试,发现催化体系对C(sp3)﹣C(sp2)类型的偶联反应仍然适用。总结实验结果,我们发现底物卤代芳烃连接的吸电基团可以提高其在偶联反应中的反应活性;同时也发现Heck反应中,烯烃端位取代基的空间位阻会使其反应活性降低。