有理同伦论中若干问题的研究

来源 :南开大学 | 被引量 : 0次 | 上传用户:yangsh1967
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本学位论文在有理同伦论中,对映射空间,分类空间和本征形式空间进行了研究.本学位论文主要结果如下.(一)本文证明映射空间map(X,Y)的有理同伦型只依赖于X的上同调代数和Y的有理同伦型,其中X是有限的CW-复形,Y是有限型的有理的CW-复形且其极小Sullivan模型形如(Λ(P⊕Q),d P=0,d Q(?)ΛP).证明的主要方法是对map(X,Y)的L∞-代数模型应用同伦变换定理.利用上述结果,本文还证得:(1)在一定条件下,map(X,Y)存在一个道路连通分支是H-空间;(2)在一定条件下,map(X,Y;f)与map(X,Y;f)有相同的有理同伦型.(二)本文通过讨论空间的高阶Whitehead积给出了一类秩为2的不能实现为分类空间的空间.本文还证得:Eilenberg-Mac Lane空间K(Q2,n)能实现为分类空间Baut1(X)当且仅当X和球面的乘积Sn-1×Sn-1有相同的有理同伦型,其中X是椭圆空间且n是偶数.(三)本文利用C∞-代数定义了本征形式代数,并用本征形式代数刻画了本征形式空间.在此基础上,本文证明了下列结果:(1)单连通且维数小于7的紧流形是本征形式空间;(2)设m≤3n+1,n≥1,则n-连通的m-上连通的有理上同调有限型的空间是本征形式空间;(3)(k-1)-连通m-维紧流形且m≥4k-2,则此流形是本征形式空间.
其他文献
我国西北地区龙首山成矿带以世界级的金川铜镍硫化物金属矿床闻名于全球,也是我国西北地区一条重要的铀成矿带。该铀成矿带中发育多种类型铀矿床,包括成矿带西段的红石泉伟晶岩型铀矿床,成矿带中段的新水井、岌岭钠交代型铀矿床以及革命沟花岗岩外带型铀矿床,成矿带东段的金边寺淋积型铀矿床。其中新水井和岌岭铀矿床是我国少有的钠交代型铀矿床,也是我国西北地区碱交代型铀矿床的典型代表。对岌岭钠交代型铀矿床开展系统的研究
近三十年以来,二维材料因其奇异的电子性质,光学性质和磁性质等受到广泛关注。随着理论预测和实验合成,新型二维原子晶体材料不断被发现。这些二维材料不仅揭示了深刻的物理机制,而且在下一代信息技术等方面展现潜在的应用前景。比如,单层MoS2薄膜能够实现“开”和“关”的调控,有望应用于场效应晶体管;钛酸锶表面的单层FeSe薄膜具有高温超导特性;单层CrI3薄膜存在长程铁磁序等。这些新奇现象的发现,对进一步理
铁电材料具有可翻转的电极化性质,能用于非易失性存储器、电容器、传感器和执行器等多个领域。多铁材料将多个基本铁序集中到一个材料中,不仅同时具有铁电性、磁性等性质,还能互相耦合,有望实现新器件的新颖应用。传统的铁电或多铁材料主要是钙钛矿块体材料,比如典型的铁电材料Ba Ti O3,多铁材料Bi Fe O3,这些材料普遍带隙较大、迁移率低;而且它们的薄膜材料存在临界厚度效应,在应用于微型化和集成度越来越
混沌在经典动力学中指具有确定性但不可预测的现象,以受经典运动方程支配的轨道长期性行为为特点。在量子力学领域,由于微分方程关于时间为线性,且由于不确定性原理的影响,轨道没有得到良好的定义,不存在严格的混沌现象。量子混沌研究的是经典系统中的动力学行为在所对应量子系统中会有怎样的特征。其中著名的结论有Bohigas-Gianonni-Schmit猜想和Berry-Tabor猜想。它们表明对应于经典动力学
本文主要研究了图的彩虹不连通染色问题。令G是一个非平凡的边染色连通图。一个边割被称作彩虹边割,如果边割中的任意两条边都染不同的颜色。若图G中的任何两个顶点之间都存在一个彩虹边割分离它们,则我们称图G是彩虹不连通的。若图G的一个边染色使得图G是彩虹不连通的,则称这个染色为图G的彩虹不连通染色。对一个非平凡的连通图G,使得图G是彩虹不连通的所需的最少颜色数被称为图G的彩虹不连通数,记作rd(G)。我们
Sylvester建立了高斯系数与二元型的半不变量之间的联系,从而证明了Cayley提出的关于高斯系数单峰性的猜想。Pak和Panova利用对称群表示理论中Kronecker系数的半群性质证明了高斯系数的强单峰性。Reiner和Stanton引入了高斯系数的对称差(?),并利用李代数的表示理论证明了Fn,k(q)在满足k≥2且n为偶数时是对称的单峰多项式。在本论文中,我们引入了杨图的半图这一组合概
蛋白质结构决定其功能,了解蛋白质的结构对蛋白质的靶向药物设计和功能注释有重大意义。然而,通过湿实验技术确定蛋白质结构成本高且耗时,而当前蛋白质结构预测算法的精度仍有待提高。核酸往往通过与其它分子(如蛋白质、金属离子等)的相互作用执行其生物学功能,准确识别核酸与其它分子的结合位点可以加速计算机辅助药物的设计。然而,现有的核酸与其它分子的结合位点预测算法的准确率相对较低。因此,本文针对这两个方面展开了
零和理论是组合数论中一个重要的分支,近年来零和理论发展迅速并且得到了广泛的关注。零和理论的一个基本研究课题是研究具有特定性质的零和子列的存在性条件,由此提出了许多关于有限阿贝尔群的不变量,例如,EGZ-常数、Davenport常数、η-常数等。上个世纪70年代,R.Graham提出研究具有不同长度的零和子列问题。他猜想p阶循环群上的一个p长序列如果有3项两两不同,那么该序列一定包含两个具有不同长度
近年来,由于RNA的三维结构数据增长较为缓慢,人们对RNA的生物功能机制无法得到进一步了解,并且也影响了靶向RNA的小分子药物的研发。因此,急需开发优秀的计算方法来预测RNA三维结构。但是目前,RNA的三维结构预测仍是一个巨大的挑战。因此,鉴于蛋白质三维结构预测领域的研究,本文首先利用已有的三维结构数据专注于RNA的三维结构特征与功能预测。本文主要开发了两个RNA结构特征预测算法和一个RNA功能预
1994年,编码学者发现一些重要的非线性二元码可以由Z4上一些特殊的具有好的结构的线性码通过Gray映射构造.在此之后,编码学者开始研究有限环上的纠错码理论.本文在已有研究成果基础上,发展有限环和有限域上的纠错码理论,研究有限环上线性码的覆盖半径,有限环上斜常循环码和斜循环码的代数结构以及有限域上优化码的构造,获得有限域上具有较好参数的线性码并将其应用于构造新的量子纠错码.具体内容如下:第一章,介