论文部分内容阅读
本文主要针对温室蔬菜水肥气热耦合提质增效机理与灌溉通量相互作用的科学问题,通过室内气候箱模拟和2年温室试验相结合的方式,采用对比设计、正交设计、通用旋转组合设计和饱和D最优设计方法,开展了温室蔬菜(番茄、水果黄瓜、生菜)水肥气热耦合提质增效机理及其数学模型的研究,系统地进行了温室膜下滴灌水肥气热耦合对蔬菜生长、光合作用、产量、品质、水分利用效率、土壤微生物、土壤酶活性、土壤氧气含量、土壤呼吸速率、土壤含水率、土壤电导率、土壤温度的影响试验,得出了各指标的数学模型、耦合效应以及最优组合方案,为温室蔬菜提质增效和水肥气热耦合灌溉技术推广提供理论依据和技术支撑。主要研究成果如下:(1)采用对比设计方法,研究了不同灌溉水溶解氧、土壤温度对蔬菜生长、光合、品质、产量及土壤微环境的影响,揭示了增氧灌溉与土壤增温对温室和智能气候培养箱蔬菜提质增效的机理,增氧灌溉提高了土壤氧气含量、土壤增温提高了土壤温度,增强了土壤酶活性,丰富了土壤微生物量,促进了蔬菜的生长(株高、叶面积指数)、增加了植株的叶绿素含量和光合速率,增加了蔬菜的产量和干物质积累量,改善了蔬菜品质。番茄和水果黄瓜较优灌溉水溶解氧为9.0mg/L、春夏季和秋冬季番茄较优土壤温度分别为26.1℃和20.6℃,水果黄瓜较优土壤温度分别为26.06℃和19.11℃,生菜较优灌溉水溶解氧为8.5 mg/L,生菜较优的土壤温度为20℃。建立了灌溉水溶解氧(DO)与土壤氧气含量(SOC)、地热管水温(TW)与土壤温度(TS)、灌溉水矿化度(IS)与土壤电导率(SEC)的关系。与对照处理相比,春夏季和秋冬季增氧灌溉较优处理(03)的番茄产量分别增加了 17.51%和15.09%,水果黄瓜产量分别增加了 22.47%和28.04%,土壤增温较优处理(T3)的番茄产量分别增加了 18.15%和18.58%,水果黄瓜产量分别增加了 30.24%和 25.39%。(2)采用正交设计方法,研究了不同土壤水肥气热耦合对蔬菜生长、光合、品质、干物质积累、产量、水分利用效率的影响,揭示了温室和智能气候培养箱的蔬菜土壤水肥气热耦合机理,水肥气热耦合对番茄和生菜生长、光合作用、产量和品质均有不同程度的提高,番茄和生菜的生长、光合作用、干物质量积累、产量等主要指标随单一因素灌溉定额、施肥量、灌溉水溶解氧和土壤温度的增加而增加,品质主要指标随灌溉定额的增加而降低,随灌溉水溶解氧、施肥量和土壤温度的增加而增加。基于主成分分析法确定番茄和生菜最优处理均为T8处理(A3B2C1D3),温室番茄最优处理(T8)灌溉定额为5760 m3/hm2、施肥量(N-P2O5-K2O)为150-50-75 kg/hm2、灌溉水溶解氧为6.0 mg/L(平均土壤氧气含量为15.99%)、地热管水温为41.0℃(春夏季土壤平均温度为25.41℃、秋冬季土壤平均温度为20.38℃),此时春夏季(秋冬季)的番茄产量为89653 kg/hm2(89357kg/hm2)、灌溉水分利用效率为 15.56kg/m3(15.51 kg/m3)、水分利用效率为 22.18 kg/m3(24.62 kg/m3)、参考作物腾发量为 781.42 mm(504.83 mm)、作物系数为 0.52(0.72)。春夏季和秋冬季T8处理的番茄产量比对照处理分别增加了 23.07%和33.61%。(3)采用通用旋转组合与饱和-D最优设计方法,研究了温室番茄和水果黄瓜土壤水肥气热耦合效应,建立了温室番茄和水果黄瓜土壤水肥气热各因素分别与生长、光合、品质和产量等主要指标之间的数学模型以及各指标的综合评价模型。水肥气热耦合对温室番茄和水果黄瓜主要指标与综合评分的影响大小顺序为:灌溉定额>施肥量>溶解氧>地热管水温。主要指标与综合评分随灌溉定额、施肥量、溶解氧和地热管水温在试验范围内增大而增大,番茄和水果黄瓜的品质主要指标随灌溉定额在试验范围内增大而降低,随施肥量、溶解氧和地热管水温在试验范围内增大而升高。高水低热、低水高热、高肥低热、低肥高热交互有利于增强番茄植株净光合速率、蒸腾速率、叶面积指数,中水高氧有利于提高水果黄瓜的叶片净光合速率,低肥高氧或高肥低氧更有利于提高水果黄瓜的叶片叶绿素含量。高肥高热交互有利于增加番茄果实维生素C含量,低水高热交互有利于增加番茄果实可溶性总糖含量和番茄红素含量,低水高肥交互有利于增加番茄果实总酸含量和可溶性固形物含量,低水高肥或低水中肥有利于提高水果黄瓜的可溶性蛋白含量、维生素C含量、可溶性总糖含量、总酸含量,高水低肥有利于降低水果黄瓜的硝酸盐含量。高水低热或高水低肥交互有利于增加番茄植株干物质积累量、产量和综合指标评分,高水高肥有利于增加水果黄瓜产量和植株干物质积累量。推荐本地区的温室番茄和水果黄瓜的最优水肥气热耦合方案为:春夏季番茄灌溉定额5142~5330m3/hm2、施肥量(N-P2O5-K2O)150-50-75~165-55-81kg/hm2、溶解氧7.9~8.1 mg/L和地热管水温34.1~36.1℃,秋冬季番茄灌溉定额4988~5210 m3/hm2、施肥量(N-P2O5-K2O)154-51-76~168-56-82kg/km2、溶解氧 7.9~8.2mg/L 和地热管水温 34.4~36.3~。春夏季水果黄瓜灌溉定额 3923~4044 m3/hm2、施肥量(N-P2O5-K2O)123-36-87~130-38-91 kg/hm2、溶解氧7.7~7.9 mg/L和地热管水温34.9~36.7℃,秋冬季水果黄瓜灌溉定额3527~3670 m3/hm2、施肥量(N-P2O5-K2O)122-35-86~128-37-90kg/hm2、溶解氧 7.8~8.0mg/L 和地热管水温 35.9~37.4℃。基于主成分分析法确定番茄最优处理为T10处理,春夏季和秋冬季番茄产量T10比T17-T20的平均产量分别增加了 36.29%和43.32%。确定水果黄瓜最优处理为T15处理,春夏季和秋冬季水果黄瓜产量T15比对照的产量分别增加了 54.42%和45.00%。(4)建立了基于水肥气热耦合的温室番茄叶面积指数与干物质积累量机理模型,经模型验证和评价,该模型的模拟精度随灌溉定额、施肥量、灌溉水溶解氧、土壤温度的增加而提高。模型的适用条件为:温室番茄灌溉定额2880m3/hm2~5760m3/hm2、施肥量(N-P2O5-K2O)75-25-45 kg/hm2~225-75-105 kg/hm2、溶解氧 4.0 mg/L~9.0 mg/L、地热管水温 25℃~45℃,温室平均气温15.06℃~41.62℃、温室平均相对湿度 22.68%~72.53%、温室平均 CO2 浓度为 251 ppm~477ppm、室外平均气温15.30℃~41.20℃、室外平均相对湿度19.44%~85.68%。