关于曲面上两个图的交叉数与Boolean时滞方程组的一些讨论

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:windlian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了拓扑图论中的一个重要研究领域一交叉数问题,我们利用可定向曲面的平面表示得到了可定向曲面上两个地图的交叉数.另一方面,本文对Boolean时滞方程组进行了一些有趣的讨论,定义了一个新的关于方程组解的半范数,对于解的机构稳定性进行了一些研究以及利用Matlab实现了求方程组解的算法。
其他文献
本文的主要由两个相对独立又有着内在联系的部分组成. 在第一部分中,我们给出了有界导出范畴的Krull-Schmidt性质的一个初等的证明.这部分的讨论主要集中在第三章.设A是一
本文主要研究半模的特殊内射性—i—内射半模以及它的较好性质,全文共分为三个部分。 在第一部分,首先给出了i—内射半模的概念,并得到了在任意真半环上存在非零的i—内射半
本文第一部分根据D.Betten和W.Wenzel于2003年给出的无限拟阵的定义,将有限拟阵的直和性质推广到无限拟阵,并得到无限拟阵直和的存在定理与分解定理.   第二部分中用偏序集理论
本文主要通过计算二元(量子)外代数的Galois覆盖代数的各阶Hochschild同调群和上同调群的维数来研究二元(量子)外代数的Galois覆盖代数的同调性质.设Λq为域k上的二元量子外
随着科学技术和网络工程的不断发展,人类已经进入了一个数字化的社会。近年来,脉冲技术、数字式元件部件、数字电子计算机,尤其是微处理机等一些新的科技迅速的发展,模拟控制
当今社会仍处于后危机时代,经济发展仍处于转型过程中,认清虚拟经济与实体经济之间的关系,对国家进一步制定有关经济政策可以提供参考方向。本文基于我国2005年-2015年国家统
科技的发展使得微分-差分方程组的应用领域更加的广阔,其主要应用在生物学、经济学、物理学、力学、控制理论和技术等方面.但对于微分-差分方程组的求解仍然很难.特征列方法首