论文部分内容阅读
本文综述了采用中空光纤中红失谐高斯模式、红失谐高斯光束、中空光纤中蓝失谐消逝波光场、空心金属波导中蓝失谐TE<,01>空心模式和蓝失谐暗空心光束实现中性原子激光导引的原理、方法和实验及其最新进展。同时还介绍了中性原子的四种类型激光囚禁的基本原理和实验方案以及实验结果:采用红失谐聚焦高斯光束的原子囚禁、采用蓝失谐激光的原子囚禁、可控双阱光学囚禁和光学晶格阱。
本文提出了一种新颖的采用圆孔衍射实现冷原子(或冷分子)光学囚禁的方案。根据瑞利.索莫非衍射理论和菲涅耳衍射理论,我们讨论了光学偶极阱的空间光强分布,计算了光阱中囚禁CH<,4>分子的光学势和CH<,4>分子所受光学偶极力。并导出有关光阱的几何参数、光强分布、强度梯度以及曲率与光学系统参数间的解析关系。研究表明光阱的囚禁体积与小孔半径的四次方成正比。
本文还讨论了采用二元径向位相板改善红失谐高斯光阱的方案。由于位相板对光束的位相调制作用,引起高斯光束的相消干涉或相长干涉。研究发现随着位相ψ的改变,光阱的最大绝对光强、光学势和囚禁体积随之发生变化。当选择位相为-π的位相板时,光阱具有的最大绝对光强比未加位相板时提高了4倍。同时光阱的囚禁体积增大了8.6倍,阱深增大了4倍。研究表明应用二元-π位相板可以有效改善圆孔衍射后的光强分布,若将圆孔和对应的位相板组合扩展至1D或2D阵列,该方案不仅可用于构成1D或2D光阱列阵,而且可用于制备新颖的光学晶格。