基于协作干扰的物理层安全传输技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:sufaya0505
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无线通信网络已经被广泛应用于民用和军用领域,成为了日常生活中不可或缺的重要组成部分。一方面,随着无线通信技术的高速发展,无线通信网络的连接设备数量呈现指数增长的趋势。另一方面,无线信道的广播特性使得无线通信系统覆盖范围内的任何设备均可接收到发送信号。因此,提供可靠安全的信息传输服务是5G以及未来无线通信网络设计和运行的首要任务之一。相较于传统的例如密码学等上层加密技术,物理层安全技术从信息论的角度利用无线信道的随机性以及目标信道与窃听信道之间的信道质量差异来实现信息安全传输,因此具有复杂度较低和资源开销较少的明显优势。得益于其带来空间自由度和分集增益的优势,多天线传输技术被视为实现无线通信系统安全传输的一种有效解决方案。具体而言,在多天线传输系统中多个发送节点可以在增强目标节点接收的信号质量同时降低窃听者的接收信号质量,从系统层面上来增强物理层安全性能。协作传输技术是多天线传输技术在空间维度的进一步延伸。在协作安全传输系统中,协作节点主要采用协作中继(Cooperative Relaying,CR)和协作干扰(Cooperative Jamming,CJ)两种工作方式来进一步增强系统的物理层安全性能。此外,利用协作节点易于部署的特点,可以根据实际需求灵活地选择其工作方式。然而在协作中继网络中,由于数据传输的过程通常分为广播和转发两个阶段,因此保密信号泄露的风险大大提高,传输安全面临严峻挑战。与协作中继方案不同,CJ方案中协作节点仅需窃听节点的统计信道状态信息(Channel State Information,CSI)即可采用向窃听者发送人工噪声(Artificial Noise,AN)的方式来降低窃听节点的接收信号质量,具有更高的安全性能提升可靠性。鉴于此,基于CJ的安全传输技术成为了当前物理层安全领域的研究热点。本文基于CJ技术,针对面向5G以及未来无线通信网络的无人机(Unmanned Aerial Vehicle,UAV)辅助的以及非正交多址接入(Non-Orthogonal Multiple Access,NOMA)无线通信系统中的安全传输方案进行了深入研究,主要研究工作和贡献总结如下:(1)研究了单窃听节点场景中基于UAV辅助的协作安全传输问题。考虑了单窃听节点和完美CSI场景,重构了目标用户安全中断概率(Secrecy Outage Probability,SOP)限制条件,并推导出了SOP确切的闭式表达式,进而证明了优化问题的目标函数为严格凹函数。以此为基础,提出一种基于CJ的安全传输算法来获取生成AN信号的最优功率分配系数,最大化系统获取的安全速率。(2)研究了UAV辅助的多输入单输出多窃听节点(Multiple-Input Single-Output Multiple-Eavesdropper,MISOME)系统中的协作安全传输问题。考虑更贴近实际通信环境的系统CSI非完美的情况,分析了多窃听节点场景下SOP的闭式表达式以及信道估计误差对系统安全性能的影响,提出了一种有效的功率分配算法来保障系统的传输安全。此外,借助几何知识优化了UAV的部署位置,进一步提升了所提协作安全传输方案的安全速率和安全能效性能。(3)研究了地面协作NOMA系统中基于CJ的安全传输方案设计。首先,在CSI非完美的条件下,讨论了具有安全传输需求的用户的SOP和普通用户的期望速率限制条件,得到了SOP的闭式表达式和基于NOMA原则的功率分配比例系数的上界。接下来推导出一种自适应功率分配方案,分不同情况进行判决进而获得最佳功率分配系数来解决约束条件限制下的安全速率最大化问题。然后,系统地分析了信道不确定性对所提协作安全传输方案性能的影响。(4)研究了UAV辅助的协作NOMA系统中的物理层安全传输问题。提出了一种具有传输策略调整特性的协作安全传输方案,以实现同时服务需求高安全速率的优先考虑用户和需求服务质量的普通用户。考虑了发送节点与用户节点CSI非完美的情况,分析了信道估计误差对系统性能的影响。然后,对功率分配系数的上界进行讨论,以此为基础推导出一种有效的自适应功率分配算法来求解SOP和传输速率限制条件下的安全速率最大化问题。最后,充分利用UAV的可控性和移动性,提出了一种UAV最优布置策略来进一步提高所提方案的安全性能和适用性。本文所提出的基于CJ的物理层安全传输方案,均已通过理论分析和仿真实验验证。数值仿真结果表明,相较于已有的方案,所提方案能有效地在不同应用场景中提高无线通信系统的安全速率和能效性能,且可以在存在信道估计误差的情况下,实现相对满意的安全和能效性能,具有环境适应性。
其他文献
探地雷达是地表地球物理科学中一种重要的探测工具。其中,能够满足特定应用环境需求的探地雷达又称为特殊探地雷达,如钻孔雷达、机载探地雷达、前视探地雷达、水下探地雷达等。特殊探地雷达可以极大地弥补常规地面探地雷达勘探技术的不足,因此极具应用前景。天线作为探地雷达系统最为核心的组成部分之一,能够辐射或接收指定频段的电磁波,完成电磁能量在自由空间和雷达系统间的相互转换,其设计的好坏往往决定了探地雷达系统整机
合成孔径雷达地面动目标指示(SAR-GMTI)技术可以对地面动目标进行检测,运动参数估计和重定位,在军事侦察和民用交通监控等领域具有重要作用。然而,传统的机载SAR-GMTI方法主要是针对常规机载平台设计的。而对于高超声速平台,传统方法将面临慢速动目标检测困难和速度估计精度不高的问题。因此需要对高超声速平台下的慢速动目标检测和速度估计方法展开研究。另一方面,在机动SAR的应用场景,由于平台运动轨迹
凭借快速的波束扫描,灵活的波束赋形能力,相控阵天线已经成为先进军事和商业应用中的关键技术。但是传统相控阵天线高昂的成本严重阻碍了相控阵天线技术在各个重要应用场景中的推广,例如卫星通信、5G通信等。如何实现低成本相控阵天线已经成为重要的研究议题。因此,本学位论文的目的是研究具有通用性的低成本毫米波相控阵天线方案,并对方案中涉及的关键技术进行展示和讨论。本文的主要内容如下:第一部分首先对比了当前相控阵
雷达吸波材料能够在特定的工作频段内吸收一定比率的入射电磁波,是目前军事领域雷达散射截面缩减及隐身技术的主要实现方法。但同时,现代雷达探测技术的日益发展要求吸波材料不仅具有超宽带、大角度的工作特性,还需要兼备低剖面、双极化等。为了实现上述目标,本文以超宽带宽入射角的电路模拟吸波材料(Circuit Analog Absorber,CAA)为研究课题,主要研究宽频带条件下吸波材料的散射特性,建立等效分
实现毫米波与太赫兹通信与应用的关键技术之一就是发展毫米波与太赫兹波辐射源,功率源器件是通信设备的核心部件之一。在毫米波和太赫兹频段,真空电子器件在实现高功率方面有着其他器件不可替代的优势。传统的毫米波及太赫兹真空辐射源器件主要采用热阴极作为电子源,热阴极真空电子器件的缺点是:发射电流密度小;阴极需要热子进行加热,不能在室温下工作;阴极预热需要一定的时长,无法满足即时性的需求等。传统的真空电子器件向
随着第五代移动通信系统(5th Generation,5G)的技术成熟和商业部署,第六代移动通信系统(6th Generation,6G)技术的开发研究开始受到广泛关注。可重构智能表面(Reconfigurable Intelligent Surface,RIS)被认为是6G网络的潜在技术之一。相关的实验测试结果表明:RIS能够有效地控制反射信号和入射信号间的相位、振幅、频率差,从而智能地控制无线
相控阵天线由于其快速的波束扫描特性以及强大的多目标追踪能力,在现代雷达通信系统中占有至关重要的地位。另一方面,未来的雷达通讯系统迫切地需求设计一个能将通信、雷达隐身及电子战等多个功能集成到同一孔径下的先进集成化电磁平台。因此该类电磁平台对未来相控阵天线设计提出了更多样化的需求,即同时具备宽带阻抗匹配、低剖面及低散射特性。强互耦相控阵天线利用天线间电磁互耦得到宽带阻抗匹配特性,并且它相较于传统宽带相
连续变量量子密钥分发(Continuous-variable quantum key distribution,CVQKD)系统可以在公共信道中建立安全共享密钥。其中,基于高斯调制相干态的CVQKD系统仅需使用标准的光学器件就可以实现量子信号的制备和探测,并且与现有的光通信网络兼容,因此具有十分广阔的应用前景。近年来,为了解决传统CVQKD系统因本振光传输而引发的各种安全漏洞问题,一种基于本地本振
射频指纹定位是目前应用前景十分广阔的室内定位技术之一,其主要优点是避免以人工建模方式分析复杂电磁传播环境。对定位任务而言,如何分析和处理形式复杂而又丰富的空间射频指纹中蕴含的信息,既是机遇也是挑战。当前射频指纹定位在实际应用中面临的主要问题包括:指纹高维且非线性、分布复杂、采集和维护成本高、方差大等。针对这些问题,本文主要从射频指纹的度量学习和迁移学习的角度对射频指纹定位中的关键问题进行了研究。本
作为现代电磁理论的两个主要应用,雷达和通信系统长期独立发展并形成各自的理论体系。两者的宽带化、网络化趋势导致无线频谱资源日益拥挤,雷达通信一体化的概念在此背景下被提出。根据发射信号和设备类型的不同,雷达通信一体化系统的研究主要集中在频谱共存一体化系统(SCIS)和信号共享一体化系统(SSIS)两个方向。雷达通信一体化可提升频谱资源利用率,显著降低系统冗余、能耗等,具有重要的研究意义和实用价值。功率