【摘 要】
:
移动互联网的普及伴随着大量网络安全问题的出现,许多新型的网络攻击方式层出不穷,危机事件频发。我国互联网安全态势仍然严峻。如何应对网络攻击,保障网络安全是我们亟待研究的问题之一。面对日新月异的攻击手段,传统网络流量异常检测方法已经不适用于当前的网络环境。传统网络流量异常检测方法过于依赖对特征的人工选择,缺乏自适应性,面对新类型的异常检测准确率低;在面对海量高维流量数据时,难以有效提取其中的关键特征,
论文部分内容阅读
移动互联网的普及伴随着大量网络安全问题的出现,许多新型的网络攻击方式层出不穷,危机事件频发。我国互联网安全态势仍然严峻。如何应对网络攻击,保障网络安全是我们亟待研究的问题之一。面对日新月异的攻击手段,传统网络流量异常检测方法已经不适用于当前的网络环境。传统网络流量异常检测方法过于依赖对特征的人工选择,缺乏自适应性,面对新类型的异常检测准确率低;在面对海量高维流量数据时,难以有效提取其中的关键特征,满足系统实时性要求;另一方面,网络流量数据多存在类间分布不平衡的问题,使得模型检测效果具有较大的偏向性,对少数类异常检测效果较差。近些年来深度学习以其在处理复杂、大规模数据和提取流量数据内在特征方面的优异性能,已成为网络流量异常检测的一种有效方案。针对现有网络流量异常检测模型难以处理海量高维不平衡数据、误报率和漏报率高、检测实时性不强等问题。本文提出了一系列基于深度学习的网络流量异常检测方法,主要贡献包括:(1)本文提出了一种基于深度学习理论的堆叠稀疏自编码器的流量数据特征提取方法。使用堆叠稀疏自动编码器实现网络流量高维特征到低维特征的非线性映射,适用于海量数据环境下的高维特征分类任务。在UNSW-NB15数据集上的实验结果表明,优化结构的SSAE能在不损失原始流量数据间信息量的前提下有效降低数据维数,在保持分类器较高的检测水平的同时降低资源消耗。(2)针对网络流量数据集分布不平衡的问题,本文使用合成少数过采样方法(SMOTE)对原始流量数据集进行处理,调节流量数据集的类间分布平衡。实验结果表明使用SMOTE对训练数据进行过采样可以有效提升网络流量异常检测模型的F1-score,使模型的查准率和查全率达到较好的平衡,并且降低模型的FNR。(3)本文还将注意力机制集成到深度学习网络中,提出了一种基于多层注意力机制的网络流量异常检测模型。在实验数据集上的结果表明,该模型的检测准确率高达98.68%,误报率仅为1.32%,均超过同类方法。最后通过可视化直观展示了多层注意力机制在流量特征选择上的有效性,有助于今后的网络流量特征选择工作。
其他文献
多能谱CT(Computer Tomograph,CT)利用光子计数探测器直接将光信号转化成为数字信号,能够获得不同能量段的成像。多能谱CT可以利用K-边成像降低辐射或造影剂剂量,还可以利用多能谱特性提高软组织对比度。然而多能谱CT图像在物质浓度较低时,物质与背景很难被区分开来;当两种原子序数很接近的物质距离很近时,在成像图中会混在一起而难以区分。超分辨率图像重建旨在提高图像分辨率的同时解决物质与
相比传统的直流电机,永磁同步电机(PMSM)简化了结构,降低了成本,提高了控制性能,在高精度伺服控制领域得到了广泛应用。摩擦力矩干扰是影响永磁同步电机伺服系统精度和鲁棒性的重要因素之一。利用现代干扰补偿控制理论,设计非线性摩擦干扰控制器,补偿永磁同步电机伺服系统的非线性摩擦力矩干扰,提高伺服系统的位置和速度跟踪性能,具有重要意义。针对永磁同步电机位置伺服系统中存在的摩擦力矩干扰,本文结合分数阶控制
随着物联网技术和产业的飞速发展,催生了许多新兴的物联网应用场景,例如水下环境的信息监测、野生动物信息采集、山区道路危险预警等。现有的无线通信网络在缺少基础设施的场景下很难有效运行,而机会网络利用网络节点之间的相遇机会进行数据传输,无需基础设施,可以更好的适应这些新兴应用场景。由于无线网络节点之间搭建的临时通信网络是高度动态且部分连通的,节点之间可能不存在完整的连接路径。机会网络采用“存储-携带-转
得益于弹性按需的服务模式和允许网络广泛访问的特性,云服务在互联网上的数量呈爆炸式增长,导致云服务市场中充斥着大量功能相似但服务质量(QoS)不同的同质化云服务。在这种情况下,用户很难确保所选择的云服务能够在特定环境中满足自身的完整需求。因此,结合推荐技术,对QoS进行准确和个性化预测成为了帮助用户选择与自身匹配程度较高的云服务的必要条件。近年来,基于QoS预测的云服务推荐在服务计算领域持续引起关注
近年来,智能决策与控制技术得到了突飞猛进的发展,极大的提升了机器人应对复杂实际问题的能力,并逐渐发展为国家层面的战略。电脑鼠是一种嵌入式移动机器人,能够自主探索未知迷宫,并实现最短路径冲刺。为了在狭小复杂的迷宫中高速运行,电脑鼠对控制与决策的性能要求较高,长期处于机器人领域的研究热点。强化学习技术能够让智能体从环境中总结规律,以“试错”的方式提升决策性能,是一种重要的机器学习方法。本文针对迷宫探索
随着物联网、5G等技术的发展,每日新增的数据量呈指数式爆炸性增长,这些来自于各种新兴应用场景如远程医疗、智能汽车驾驶、智慧城市等方面的数据,对服务的URLLC(Ultra Reliable Low Latency Communication,超可靠低延迟通信)提出了更为严苛的要求。为更好的满足这些要求,移动边缘计算(Mobile Edge Computing,MEC)应运而生。而移动边缘计算中一个
随着各种无线应用的不断涌现,无线网络对频谱资源的需求不断增多。而无线频谱资源的不足严重限制了无线网络的发展。可见光通信凭借其丰富的频谱资源、低廉的成本、超高的传播速度成为一个极具前景的无线传输技术。在可见光通信中广泛存在着由于器件非线性引起的非线性失真。而可见光通信系统通常采用的直流偏置光正交频分复用(DCO-OFDM)调制方式存在峰均功率比高的问题,信号容易进入非线性区域,产生非线性失真。当前对
光纤弯曲传感器在建筑、航空、医药、平面度监测、机械结构弯曲角度测量等多个领域都有着广泛的应用和重要意义。随着材料技术的发展,传感器在朝着精确、灵敏、智能化、网络化、低成本、易于加工的方向发展。光纤传感器由于其固有的优势受到了科研人员的广泛关注,而增敏型塑料光纤弯曲传感器有着制作简单,可判断弯曲方向,能有效增大光纤弯曲时的传输损耗灵敏度和动态测量范围,可用于分布式光纤传感等优点。随着图像处理器等高性
细粒度图像分类是计算机视觉领域中的一个重点研究方向,由于细粒度图像数据存在难以收集与标注昂贵的特性以及细粒度类别间相似度高的特点,其识别难度往往远高于通用图像数据的识别。现有的细粒度图像分类方法尽管在一定程度上缓解了类间差异小的问题,但这些方法的训练却倾向于依赖大量数据,而在样本量少的情境下无法很好地完成分类。为了解决上述问题,研究人员提出了针对细粒度图像分类场景下的小样本学习方法,这些基于小样本
随着通讯技术和传感器技术的快速发展与普及,能够融合现代通信与网络技术的智能网联汽车(CAVs)将会逐渐替代普通人工驾驶汽车(HVs)。CAVs通过车与车、车与道路设施之间信息的交互,来具备感知周围环境的能力,从而做出智能的决策,以实现安全、舒适、节能、高效的行驶要求。当前交通存在由于信息滞后导致的交通震荡问题,该现象普遍出现在道路前方路口有红绿灯的情况。且现阶段研究对于道路上CAVs和HVs大量共