基于EtherCAT的多传感器融合全向移动机器人技术研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:zxw123321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经济社会的发展和生产力的提高促使机器人的应用越来越广泛,随着传感器技术的进步,机器人系统拥有了更加强大的探测和感知能力,大大推动了机器人应用技术的发展。但当前大部分的移动机器人在进行自主导航的过程中,其数据源严重依赖于单一传感器,且存在总线协议不统一、实时性差、应用较为复杂等问题。因此本课题基于ROS平台和EtherCAT通讯技术,将轮式里程计、激光雷达和深度相机等传感器进行融合,搭建了一个能够完整实现自主导航功能的移动机器人。首先,根据功能和技术指标进行全向移动机器人方案选型与设计。分别进行硬件设计与软件设计,最终将软硬件系统结合搭建出实物平台,作为实验对象在后续进行相关实验验证。其次,针对全向移动机器人进行系统优化。将ROS系统与EtherCAT主站进行融合应用,提高整个控制系统的实时性和电机间的同步性能,通过编写驱动程序实现对伺服电机的优化控制,并设计实验进行同步性验证。然后,对于机器人视觉里程计中传统RANSAC算法在去除误匹配时存在计算复杂的问题,通过粗糙去除和精细去除两个环节限制迭代次数,用以达到加快去除速度,提高匹配正确率的目的。考虑到轮式里程计产生的累计误差造成的定位不够准确,使用视觉里程计对轮式里程计进行修正,将两者进行融合,从而提高定位精度。接着,在机器人建图过程中针对二维激光雷达存在扫描面单一的问题,将深度相机产生的点云数据转化为类激光数据,并与二维激光数据进行融合,以此获得更为全面丰富的环境信息;针对标准A*算法存在的不足,通过改进启发函数和提取关键路点达到改进优化的目的。经仿真实验证明,改进后的路径长度更短,到达目标点的效率更高,并且动态窗口法与改进后的A*算法融合后具有更好的动态避障效果。最后根据上述研究内容,分别进行里程计位置融合、融合建图、导航路径优化以及导航精度测试实验。
其他文献
受贸易政策变化、大流行疫情等因素影响我国针织童装行业发展增速放缓,但行业总体仍处于上升转型阶段,既有着国家“一带一路”倡议、互联网信息化、行业智能化的发展机遇,又有着缺乏创新性、品牌影响力小、消费者需求升级等挑战。今后几年针织童装行业即将迎来发展的黄金期,但对标国外成熟的针织童装市场以及国际头部童装品牌,中国针织童装行业仍处于成长期,针织童装要朝着柔软舒适、健康安全、时尚创新、多功能化、绿色可持续
由于第四次工业革命对工业智能化的需求逐渐增加,多智能体系统的分布式协同控制问题在近年来逐渐受到越来越多的研究者的关注。在多智能体系统的研究领域中,一致性问题是一个研究热点。在过去的许多研究中,研究者们假设多智能体系统所处的环境是理想的,即多智能体系统不会受到网络攻击的影响。然而,多智能体系统对于通信网络的依赖性使其暴露在了网络攻击的威胁中。因此在设计多智能体系统时,考虑网络攻击所带来的影响非常有必
人体行为识别是人工智能、模式识别以及机器学习等领域中最重要的研究方向之一,是计算机视觉和多媒体分析领域的热点研究课题,在安全监控、人机交互、医疗诊断、视频分类等领域都有着重要的学术意义和巨大的应用价值。虽然人体行为识别方法在早期的研究过程中已经取得了较大的进步,但是在实际应用中人体行为识别数据常受到光照变化、复杂背景、遮挡和人体自身等因素的影响。这使得人体行为识别研究始终是十分具有挑战性的课题。现
近年来,随着人工智能与机器视觉技术飞速发展,行人检测和跟踪技术因其具有重要的学术研究价值和商业价值,受到人们广泛关注,基于检测的目标跟踪算法逐渐成为研究的热点,其中检测器的性能对算法最终的跟踪性能起着至关重要的作用。论文沿用基于检测的跟踪框架,对基于卷积神经网络的行人检测与跟踪算法进行了深入研究,主要研究内容如下:在行人检测方面,针对目前行人检测过程中漏检率高和检测速率慢的问题,在YOLOv3算法
随着网络通信技术的日益成熟、网络规模的不断扩大,网络安全具有越来越重要的意义。网络流量数据的异常检测和分类成了维护网络安全的一种重要手段,近年来受到越来越多的关注和研究。但目前网络流量数据异常检测和分类的研究中存在着数据量大、数据分布不平衡、传统的异常检测和分类方法准确度较低等问题。自编码器是深度学习领域中重要的神经网络,由于其出色的特征提取能力而被广泛研究用于数据的异常检测和分类领域,本文主要针
迭代学习控制广泛应用于具有重复运动特性的被控对象的轨迹跟踪问题,其利用先前批次的输入以及误差信息,不断修正当前批次的输入信号,经过足够多的批次后能够实现准确跟踪。实际中被控系统一般都是非线性系统,因此,将迭代学习控制理论应用于非线性系统的跟踪控制问题具有重要研究价值。在传统的迭代学习控制研究中,学习律的增益大多是固定不可变常数,增益固定系统收敛速度一般也固定,初始参数的设定决定了系统的运行状况。变
目标跟踪是计算机视觉的重要分支之一,正随着信息科技的发展在人机交互、智能机器人、自动驾驶、国防安全、视频监控和智慧城市等领域中得到越来越多的重视和应用。尽管视觉跟踪技术在过去数十年中得到了长足的发展,但由于目标遮挡、尺度变化、外观形变以及相似物体干扰等跟踪环境因素的复杂多变,能够在多应用场景下满足对跟踪的精度、实时性和鲁棒性等需求仍是一项艰巨但有着光明前景的工作。本文基于深度学习算法模型,针对长时
在智能护理机器人领域,如何帮助机器人快速且准确地识别护理对象的动作行为已成为该领域的热点研究问题。准确识别动作行为是护理机器人实现护理智能化的先决条件,且可增强护理机器人的动态感知能力,故行为识别技术是护理机器人实现智能化的重要组成部分。基于深度学习的行为识别技术具有建模过程简便且训练模型容易的优点已逐渐成为行为识别技术的发展趋势,但基于深度学习的行为识别技术在识别准确率、泛化能力及收敛速度等方面
随着人类生产生活方式的不断更新变化,人们开始更加注重自身的健康问题以及生存环境的安全问题,特别是对各种有可能危害健康和破坏大气环境的有毒有害气体的加以关注。气体传感器作为一种能够监测各种气体浓度和成分的装置已经被广泛应用于众多场景,也吸引了更多人的目光。因金属氧化物半导体式气体传感器自身拥有的一系列优势,例如性能相对较好、器件结构简单以及性价比高等,而成为了许多研究人员争相报道的对象。很多时候人们
近年来,随着科技的不断进步发展,移动机器人相关技术已逐步在人类实际生活与生产过程中发挥重要作用,相关行业领域对于移动机器人的性能需求也愈发迫切。自主位姿估计与运动控制作为移动机器人在未知环境中完成工作任务的技术基础,近些年来引起了国内外学者的广泛关注。针对移动机器人在复杂环境下的实际功能需求,本文利用单目视觉、IMU与轮式里程计实时传感信息,进行移动机器人多传感信息融合位姿估计与速度控制研究。首先