基于Hamilton能量函数法的机电扰动控制器设计

被引量 : 3次 | 上传用户:liongliong580
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现代电力系统是一个典型的高维数、强非线性复杂动态系统,其正常运行时不断遭受各种各样的扰动。因此,电力系统的安全稳定问题一直受到人们的广泛关注。电力系统故障时,汽门控制能够减少因机械功率与电磁功率不平衡而引起的转速波动和功角摆动,有利于系统重新建立同步。励磁控制能调节发电机机端电压和无功功率,是电力系统控制领域最常用最经济的控制手段之一。将汽门控制和励磁控制相结合,能提高系统故障后的收敛速度,有利于系统更快地建立稳定。早期电力系统的控制器主要是基于非线性系统在运行点附近进行线性化下设计的,但电力系统的
其他文献
与传统交流电机相比,永磁同步电动机(Permanent M agnet S ynchronous Motor,PMSM)有着结构简单可靠,能量密度大,损耗小等显著优点。近些年来,随着价格更加低廉、性能更加优异的铁铷硼永磁材料的广泛应用,除了在航空航天、机器人及其他高精尖领域,永磁电机正越来越多的应用于一般的伺服系统。矢量控制将交流电机的控制与直流电机进行等效,以获得与直流电机相媲美的控制效果,已成
气体绝缘金属封闭输电线路(gas-insulated metal enclosed transmission line,GIL)以其广泛的适用性、优秀的电磁兼容性以及易维护、运行可靠的优点,已得到了越来越广泛的应用。但由于GIL系统模块化的结构设计,其制造与检修工艺相当精细,使得部分常规的预防方法很难有效实行,因此,GIL一旦发生局部放电故障后果相当严重。为了在故障发生时快速修复故障,工程中GIL
日益增长的大气氮沉降一方面增加了陆地植被的可利用性氮源,另一方面又可能使局部地区出现氮饱和、甚至氮过量,进而造成严重的负面影响。因此,探讨植物对大气氮沉降的响应与