【摘 要】
:
在高温和高负荷等苛刻工况下工作的设备轴承、齿轮、叶片和其他易磨损传动部件的磨损和润滑,直接关系到设备运行的稳定性和安全可靠性。Co基高温合金相比于其他合金具有更优异的高温强度、抗氧化性与耐腐蚀性。以钴合金为基体设计一种宽温域内具有优异抗磨性能的自润滑复合材料,对解决高温部件的磨损具有深远的意义。润滑相与抗磨相的选择是影响复合材料高温抗磨性能的重要因素。本文采用高温热压烧结技术制备了一系列钴基高温自
论文部分内容阅读
在高温和高负荷等苛刻工况下工作的设备轴承、齿轮、叶片和其他易磨损传动部件的磨损和润滑,直接关系到设备运行的稳定性和安全可靠性。Co基高温合金相比于其他合金具有更优异的高温强度、抗氧化性与耐腐蚀性。以钴合金为基体设计一种宽温域内具有优异抗磨性能的自润滑复合材料,对解决高温部件的磨损具有深远的意义。润滑相与抗磨相的选择是影响复合材料高温抗磨性能的重要因素。本文采用高温热压烧结技术制备了一系列钴基高温自润滑复合材料,研究了润滑组元与抗磨组元对钴基复合材料的高温摩擦学性能的影响,建立了钴基复合材料摩擦系数预测模型。分别研制了纳米级和微米级Al2O3陶瓷颗粒强化的CoCrNi基高温耐磨复合材料,并系统研究了在室温~1000℃范围内陶瓷颗粒的高温抗磨机理。研究发现,Al2O3的添加使得CoCrTi基复合材料在宽温域内摩擦系数提高,磨损率降低。特别是在高于600℃的试验条件下,磨损率显著降低。在宽温域内,添加纳米Al2O3的复合材料表现出最佳的耐磨性,其磨损率在0.84-4.62×10-5mm~3/N·m范围内,与未添加Al2O3和添加微米Al2O3的复合材料相比磨损率低0.5-5倍,这是归因与复合材料高硬度以及磨损表面上生成的氧化物润滑膜。通过高温热压烧结制备了CoCrTi-WS2高温自润滑复合材料,在不同温度、不同载荷和不同滑动速度下对其摩擦学性能进行研究。发现WS2的添加提高了材料的硬度与摩擦学性能。在宽温域内,复合材料的摩擦系数先降低后趋于平稳,趋于0.409-0.559范围内。磨损率先升高后降低,在1000℃时表现出最低磨损率,其值处于0.9×10-6mm~3/N·m附近。在不同载荷和不同滑动速度下,400℃时,摩擦系数在15N与0.3m/s条件下最小,其值分别在0.418-0.443与0.387-0.416之间。其磨损率随速度与载荷的增大而增大。600℃时,摩擦系数先升高后降低。磨损率先增大后趋于平稳,趋于0.91-3.148×10-5mm~3/N·m之间。选用WS2与CuO作为CoCrTi基复合材料的复合润滑相,研究了复合材料在室温至1000℃宽温域内的摩擦学性能。结果表明:WS2和CuO的添加明显改善了材料的硬度与宽温域摩擦学性能。摩擦系数与磨损率均随温度的升高先增大后减小。添加9%WS2与3%CuO的复合材料摩擦学性能最佳。尤其在1000℃时材料的摩擦系数与磨损率最低,分别为0.38与0.119×10-6mm~3/N·m。WS2可在20℃到400℃条件下起到润滑作用,CuO的添加使材料在600℃到1000℃下具有良好的高温摩擦学性能。由于WS2与CuO的协同润滑机制,使得钴基自润滑复合材料在宽温域内具有优异的摩擦学性能。通过使用多元线性回归方程和最小二乘法相结合,建立了钴基复合材料的摩擦系数预估模型。通过对比试验所得值与拟合数值组成的曲线,结果表明,模型较精确,曲线较吻合。
其他文献
现代工业技术的进步日新月异,人们对材料的性能要求越来越高,单一材料现在已经不能满足人们的要求。因此,研究和制备新型复合材料并将其应用在工业领域是当下最重要的任务之一。碳钢具有强度高、成本低、加工性能好等优点,而不锈钢具有较高的表面性能和良好的耐腐蚀性,碳钢/不锈钢复合板同时具有两者优异的性能,可以节省Cr和Ni等贵金属。广泛应用于石油、化工、食品、水利等重要领域。在整个碳钢/不锈钢复合板的产业链中
ZL101属于铸造铝合金,它成分比较简单,而且具有较低的成本,较好的铸造流动性和较宽的半固态区间,是一种适合半固态加工的具有代表性的典型铝硅合金。颗粒增强铝基复合材料通过在金属基体内加入颗粒增强相的方式,使复合材料结合了基体金属的韧性、比强度,增强颗粒的强度、硬度和耐磨性等优点,是一种综合性能较优异的材料,可以满足现代技术发展对材料提出的更高要求。半固态技术具有流程短、热裂倾向低、成形好等优点,本
全球对化石燃料的依赖以及温室气体人为排放量的增加,使得未来必须开发清洁的可再生能源。太阳能是最有希望解决能源危机和环境污染的可再生能源。虽然太阳能可以通过使用太阳能电池吸收转换,但是这种光伏设备受到太阳光间歇性的限制。因此,有必要采用新的方法储存太阳能以满足能源的需求。利用太阳能驱动分解水就是一种有效的途径,因为它可以在没有碳参与的条件下产生绿色环保的氢能。本文通过使用自制的卤化物化学气相沉积(H
镁合金是目前应用较为广泛的轻质合金之一,因其轻量化的特点应用于航空、航天等各个领域,但镁合金室温下可加工塑性差、耐蚀性差等问题亟待解决。而铝合金则是仅次于镁合金的轻质合金,并且具有良好的塑变能力和耐蚀性等。因此,镁/铝复合材料可以综合两者的优势更好地满足实际需求,实现两种材料界面的稳定连接有着重要的应用价值。纳米压痕技术作为当前研究材料微观特性的有力手段之一,已广泛应用于测试薄膜、生物材料以及界面
硬脆材料具有高硬度、耐高温、耐腐蚀、耐磨损以及自身重量轻和良好的自润滑性等优良性能,在机械电子、航空航天、装甲车等国防领域具有非常重要的应用。由于硬脆材料高脆性高硬度的特点,使得常规的机械加工方法很难加工硬脆材料。电镀金刚石线锯切割是当前硬脆材料加工领域中应用非常广泛的一种特种加工技术。这种加工方法具有加工精度高、切割表面质量好、切缝小、节约贵重材料、环保无污染、加工过程噪音小、切割圆度好等优点。
瓦斯的赋存受构造、压力、沉积、水文等地质因素的影响,且不同区域主控要素有差异。水文地质条件是阳煤集团S矿区15号煤瓦斯富集性的关键控制因素,突出表现为瓦斯含量和瓦斯成分变化范围极大,氮气带、氮气-甲烷带大面积分布。因此,研究地下水系统及其控气作用机制非常重要。为此,充分利用地质、地震、测井等多源信息,研究了地下含水系统的地震地质综合解释方法。首先在地震沉积学理论指导下,构建了高分辨率层序地层格架,
为实现重介质旋流器分选密度在线调控的设想。借鉴旋转磁场在磁力研磨,磁性靶向药物载体的运动控制方面的应用和静态磁场对重介质旋流器的分选密度的改变,提出在重介质旋流器上端盖位置和筒体位置处施加同轴旋转磁场,对旋流器内磁性重介质进行加速,通过控制磁场转速来控制旋流器内磁性重介质的运动,进而实现设想。为探究旋转磁场对磁性物颗粒运动的影响,采用钕铁硼材质的长方形永磁铁,构造了N-S交替排列和全N-N排列的的
本文使用不同规格的ZTA(氧化铝增韧氧化锆)陶瓷作为增强颗粒、以高铬铸铁作为金属基体,对ZTA陶瓷颗粒表面镀金属或包覆金属及化合物微粉,采用粘结剂粘结制备成陶瓷颗粒预制体,采用负压铸造技术成功制备出ZTA陶瓷颗粒增强高铬铸铁基复合材料。成功制备出ZTA颗粒表面镀Ni、Cu、Co以及包覆Cr、Al、B4C、Fe2O3、Cr2O3等微粉的复合材料,采用SEM、EDS、XRD等方法实验分析了上述复合材料
SiC颗粒增强铝基复合材料具有弹性模量高、耐磨性好、尺寸稳定性高、比强度高等性能优点,在航空航天、汽车、体育器材等领域具有广泛的应用。为了分析并解决搅拌铸造法制备颗粒增强铝基复合材料中存在的问题,其中包括SiC颗粒不均匀分布、气孔率高、溶质元素偏析严重、晶粒粗大、颗粒和基体润湿性差等,从而为颗粒增强铝基复合材料的制备提供有效的理论指导。本文采用超声波辅助半固态搅拌铸造,以2024Al为基体,10μ
通过对豫南地区荒路村小学进行线上观察与访谈,研究发现农村儿童在线教育实践离期望相去甚远,课上的听不懂、分屏玩游戏以及课下的作业互动等成为其数字实践的主要表征形式。从线上教育实践的生产逻辑来看,拥有多重身份的学生在拟态环境中无法像坐在教室里一样认真聆听老师的讲授,技能可及性建设的缺位可能造成更大的教育不平等,而将技术逻辑不加批判地植入教育领域可能导致资本逻辑下的教育异化。研究建议,在政策层面因地制宜