【摘 要】
:
关系抽取任务旨在从半结构化或非结构化文本中获取结构化的事实知识三元组,为知识图谱的构建提供数据支持。目前,常用的抽取方法主要是基于特征模式的关系抽取方法与基于神经网络的关系抽取方法。基于特征模式的关系抽取方法依靠手工设计的特征模板对半结构化或非结构化文本数据进行模式匹配而后提取出符合特定模式的关系知识,而基于神经网络的关系抽取方法则依赖于神经网络结构自动提取文本中与事实关系相关的上下文特征以提取关
【基金项目】
:
国家重点研发计划“云计算与大数据”重点专项“大数据知识工程基础理论及其应用研究”(项目编号:2016YFB1000901),以及该项目的示范应用之一—华谱系统;
论文部分内容阅读
关系抽取任务旨在从半结构化或非结构化文本中获取结构化的事实知识三元组,为知识图谱的构建提供数据支持。目前,常用的抽取方法主要是基于特征模式的关系抽取方法与基于神经网络的关系抽取方法。基于特征模式的关系抽取方法依靠手工设计的特征模板对半结构化或非结构化文本数据进行模式匹配而后提取出符合特定模式的关系知识,而基于神经网络的关系抽取方法则依赖于神经网络结构自动提取文本中与事实关系相关的上下文特征以提取关系知识。然而已有的特征模板方法难以覆盖碎片化的文本中出现的各类关系特征,因此此类方法的抽取精度受到了限制;同时非结构化文本数据中表达关系事实的方式具有多样性,传统的神经网络难以有效处理此类异构的上下文特征,因此其在此类文本数据中的关系抽取效果也难以提升。为解决上述问题,本文主要做了如下工作:(1)提出基于领域适应的关系提取方法。本方法使用一种主动领域适应的关系提取策略以综合多个同语言但不同特征空间的词表示知识库中的特征。该策略通过注意力机制与词表示对齐方法充分结合外部知识与语料本身的上下文信息,提高了文本中关系特征提取效率。在常用的关系抽取数据集的实验中,本方法取得了较高的抽取精度。(2)提出基于联合学习的关系提取方法。本方法使用一种结合注意力机制的混合网络进行命名实体与文本关系的联合抽取。该策略通过将改进的多头注意力机制与多种神经网络方法组合,以充分利用命名实体识别任务及关系抽取任务中交互信息。本方法在实验数据集中取得了较高的抽取精度。
其他文献
光场相机通过对单个场景进行多视角密集采样,使得高精度深度信息的挖掘成为可能,在深度传感器中不论在便携性还是深度精确性方面都具有显著优势。现有的深度估计方法不能很好处理遮挡和噪声问题,特别是对于包含遮挡区域的噪声场景,遮挡和噪声的同时存在将使深度获取难度进一步加大。本文分别围绕遮挡和噪声这两大难点问题对光场深度估计展开研究。论文的主要研究工作如下:(1)概述光场深度估计原理以及国内外的应用场景和研究
水下图像是获得水下场景信息的重要媒介之一,在水下探测、海洋研究等领域都扮演着重要角色。然而,光在水下传播时会与水体产生强烈的吸收与散射作用,导致水下成像质量下降,严重限制了水下的可视范围。因此,水下成像及复原技术在水下救援、海洋探索以及海洋目标识别等领域都有着重大意义和实际价值。本文首先针对水下图像中散射光去除的问题,采用分层思想分离图像中的散射光,实现了水下图像复原,提高了水下图像的质量;其次针
大数据时代,人们日常生活中处处都在积累着数据,从而导致大量的数据在不停的堆积,这些数据的内在价值是让很多学者们去研究聚类算法的动力。聚类算法的出现,使得巨大的数据得以发挥背后隐藏的价值。聚类有效性指标是对聚类结果进行评价,对于发现正确聚类数起到关键性的作用,然后现有指标存在簇中心分布很接近时难以得到正确聚类数、分离性处理机制过于简单、面向含噪声的数据集效果较差的问题。为此,本研究面向模糊聚类提出了
随着智能化信息时代的到来,校园学生对于获取信息的高效性也越来越重视。目前高校学生获取各类信息需要在不同的App和平台上进行,这对高校学生获取信息造成一定的局限性。在信息爆炸的时代,快速找到自己有用的信息对提高生活品质也显得必不可少。为此,需要搭建基于个性化推荐的、集失物招领、交友、经验交流、买卖交易为一体的校园学生互动管理平台。本平台采用个性化的推荐算法,为每一位学生提供个性化的服务,从而让用户快
卷积神经网络在计算机视觉领域得到了大量的应用,尤其是基于卷积神经网络的目标检测方法目前在学术界和工业界都受到了广泛关注。然而,由于卷积神经网络具有较高的计算复杂度,目前目标检测方法通常依靠大型服务器如GPU(Graphics Processing Unit)进行运算。但是,当前GPU平台存在功耗高、体积大以及成本昂贵等缺陷,使得基于卷积神经网络的目标检测方法难以应用于移动机器人、无人机等轻量化平台
如何基于给定的输入文本描述生成与之相一致的图像是一个十分具有挑战性的问题。目前的方法大都是首先合成一张初始模糊的图像,然后提炼这张初始图像去生成高质量的图像。然而,现在大多数的方法都很难合成与输入文本描述相一致的初始图像。所以如何在初始图像不好的情况下去合成高质量的图像至关重要。在本篇论文中,为了解决这个问题,基于生成对抗网络(Generative Adversarial Networks)做了以
面部表情是最直接、有效的情感表达方式,与之相关的人脸表情识别技术也被广泛应用于人机交互、智慧医疗等多个领域。人脸表情的表示模型分为离散分类和连续维度,离散分类模型把面部表情分为六种基本表情,而连续维度模型通过建立连续的情感空间来描述复杂微妙且连续变化的表情。自然环境下的人脸复杂多变,且连续维度模型对表情进行了更加细致的划分。本文针对自然环境下的静态图片和动态视频场景下的连续维度模型的人脸表情识别问
情感估计是人机交互中至关重要的一环,让机器准确地理解用户情感可以建立起更加和谐的人机环境。由于面部表情是人类表达情感的主要方式,因此,基于人脸视频的情感估计成为近年来的研究热点。情感主要有离散分类和连续维度两种模型表示。其中,基于连续维度的情感模型将情感状态映射到一个连续的维度空间中,相较于离散分类的情感模型,它可以描述出更复杂、微妙的情感。因此,本文致力于探究自然环境下的人脸视频维度情感估计,具
随着当今社会的发展,对室内定位的需求日益增加,由于GPS等室外定位技术在室内定位的应用受到限制,目前室内多采用射频识别(Radio Frequency Identification,RFID)、红外线、超声波、Wi Fi、超宽带(Ultra-Wideband,UWB)等定位技术,其中UWB由于时间分辨率高、穿透性强、抗多径能力强等特点,使得其更适用于室内定位,而其他定位技术大都由于易受环境影响、定
在科技飞速发展的时代,科技文献数量增长的速度越来越快,但是科技文献一般篇幅较长,无法快速掌握核心内容,因此,急需一种科技文献关键短语提取方法。关键短语提取是指从一段文字中标注出能够概括该段文本核心意思的短语或词语。现有的大多数科技文献关键短语提取方法都基于词频信息,并没有包含足够的语义信息;很多方法属于单词级别,没有利用单词之间产生的短语信息,在提取多个单词的较长关键短语上效果不佳。针对上述问题,