铁金属有机框架基复合光催化剂的制备及性能研究

来源 :黑龙江大学 | 被引量 : 0次 | 上传用户:tj_tong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
如今,处理难降解污染物已成为一个急需解决的全球性环境问题。其中氯酚类污染物对水生生物是有毒和有害的,并被确定为对人类的潜在致癌物。光催化技术作为一种新兴的处理环境污染的方法,其独有的光能利用率和无二次污染的特性引起了研究者们的极大兴趣。开发既能降解高毒性有机物,又能在可见光作用下将水分解为H2和O2的高效环保光催化剂显得尤为必要。
  本论文对铁金属有机框架基复合光催化剂进行研究。它具有六角八面体结构、合适的比表面积、可调的孔隙通道以及良好的光学性能。通过在Fe-MOF表面负载超薄介孔g-C3N4,使其电子更容易在光照射下被激发,复合材料的光响应能力与光能利用效率得以提升。还能够进一步应用于水体中高毒性氯酚类有机污染物的降解并同时生成氧气。本论文对制备的Fe-MOF复合光催化剂结构组成进行了一系列详细的表征,并深入研究了其降解污染物能力、析出氧气性能、光热效应和光催化机理等,研究内容如下:
  (1)通过分子自组装、乙醇插层、热致剥离和热聚合的方法合成了具有超薄介孔纳米片结构的g-C3N4光催化剂。再通过溶剂热法让超薄介孔g-C3N4包覆在NH2-MIL-101(Fe)表面,成功构建具有八面体结构的U-g-C3N4/NH2-MIL-101(Fe)异质结复合光催化剂,同时调控了超薄介孔g-C3N4的负载量,分别为1,2,4,6和8%。对制备出的超薄介孔g-C3N4,NH2-MIL-101(Fe)及二者的复合光催化剂材料进行一系列的表征分析,如SEM、TEM、AFM、BET、EDX、XPS、XRD和FT-IR。结果证明,U-g-C3N4在NH2-MIL-101(Fe)八面体上的均匀生长不仅明显有利于MOF基底的光学利用率,还有利于反应物和产物的扩散。
  (2)当U-g-C3N4的掺杂质量为6%时,达到了最佳复合比例,M101-U6异质结复合光催化剂在可见光下有极佳的响应能力,其光催化降解效率最高,在3h内对2,6-二氯酚和2,4,5-三氯酚的降解效率分别达到了98.7%和97.3%。光解水产氧的效率达到了402.5μmolh-1g-1,是纯样品U-g-C3N4和NH2-MIL-101(Fe)的2.4倍和1.6倍。U-g-C3N4/NH2-MIL-101(Fe)体系在光激发下可以自发生成过氧化氢,M101-U6的H2O2产量最高达到了69μM。由于Fe-MOF中存在Fe金属离子中心,类芬顿体系得以与光催化反应耦合,进一步提高了光催化效率,还表现出了杰出的光热效应。这种光催化体系与类芬顿反应相结合的二合一策略在建立新型复合光催化剂去除水中高毒性有机污染物并同时产生O2方面具有广阔的前景。
其他文献
1997年Benvenuti等人发现钛(Ti)、锆(Zr)和钒(V)三元合金组成的薄膜吸气剂可以在200℃下烘烤4小时后对真空中的气体分子具有明显的吸附效果,不久之后这种非蒸散型吸气剂(non-evaporation getter,简称NEG)薄膜在真空和加速器工业领域受到了广泛的关注与研究。NEG薄膜在室温下即具有吸气性能,但是当其表层以化学吸附的形式吸附有太多气体分子时,性能就会因为有效表面积
本论文的主要工作是高能同步辐射光源直线加速器物理设计。高能同步辐射光源是由高能所承建的第四代同步辐射光源,建设地点位于北京市怀柔区。它由一台储存环、一台增强器、一台直线加速器和连接三台加速器的输运线构成。其中,直线加速器包含电子枪、聚束系统和主直线加速器。聚束系统由次谐波腔SHB1和SHB2、驻波预聚束器PB、行波聚束器BUN、一根3米长常温等梯度行波加速结构A1、22个用于横向聚束的螺线管以及束
硅光电倍增器(Silicon Multiplier,SiPM)是一种新型固态光电转换器,其工作原理是工作于盖革模式下的光电二极管阵列。与传统的光电倍增管(Photomultiplier Tube,PMT)相比,SiPM不仅具有类似的高增益,高光子探测效率和出色的时间响应等优点;此外,SiPM还具有工作电压低、结构紧凑、对磁场不敏感等优势。随着制造技术的不断改进,SiPM最初的高暗计数与高相关噪声的
氟盐冷却高温堆是结合了多种反应堆优势提出的一种第四代反应堆,其技术特点为:使用包覆燃料颗粒作为燃料,熔融氟盐作为冷却剂,更多采用非能动安全设计,借鉴成熟的反应堆常规岛设计和能量转换系统。评估认为,氟盐冷却高温堆具有良好的安全性、经济性、可持续性和防核扩散性,具有很高的商业可行性。  小型模块化反应堆是当前反应堆发展的一大热点,因为小型模块化反应堆能满足更广大用户和更灵活的用电需求。小型模块化反应堆
同步辐射硬X射线微纳探针技术作为微纳米领域的一种重要测试手段,由于具有纳米级分辨力,被广泛用在材料、生物、化学等研究领域,极大地推动了纳米科技的发展。与此同时,纳米技术的进步,特别是纳米材料、生物学的飞速发展,对纳米聚焦系统的技术研究和功能扩展也提出了较大挑战。这些挑战主要包括两个方面:一是纳米聚焦系统的空间分辨和精度是衡量纳米聚焦系统性能的重要指标;二是纳米聚焦系统的控制技术是确保纳米级快速扫描
球床式氟盐冷却高温堆是第四代反应堆之一,结合了高温气冷堆和熔盐堆的优点,因具有较高经济性、本征安全性而备受推崇。堆芯中燃料球随机堆积形成的球床结构受熔盐流动、外力等因素影响发生变化而影响堆芯稳定性。目前针对球床堆积规律的实验和理论研究还不够充分,已有干燥环境中的球床堆积规律研究结果不适用于高温熔盐环境。开展液态环境下的堆芯球床规律的研究和模拟,是球床式氟盐冷却高温堆研发和工程建设中的一项重要内容。
食物垃圾(FW)是一种未开发的资源,具有很高的资源回收能力。在暗发酵(DF)中使用FW作为底物被广泛研究,因为FW含有大量有机物质和水分,如脂质、淀粉和蛋白质。暗发酵具有从食物垃圾中生产高价值副产物生产的能力,如乳酸(LA),氢(H2),醇(EtOH),短链脂肪酸和甲烷。此外,已经证明氢是有前景的能源之一,对减少对化石燃料的依赖至关重要。另外,VFA也被广泛应用,如作为替代碳源的利用。  本研究采
学位
当今现代社会的高速发展导致化石能源的消耗日趋增加,同时由此引发的一系列环境污染问题让人们越来越重视可持续发展,并在积极寻求清洁高效的可再生能源方面达成共识。在新能源产业中,燃料电池作为主力军被广泛研究。直接甲醇燃料电池(DMFC)的能量密度高、启动时间短且对环境友好,在便携式电子设备中具有巨大的应用潜力。目前在DMFC中最常用且有效的催化剂是贵金属铂(Pt)基催化剂,但要推动其商业化进程还需解决催
随着经济的不断发展,全球环境污染和能源危机日益严重,已成为制约人类生存和发展的重要问题。可见光驱动的半导体光催化技术具有能耗低,效率高,不产生二次污染等特点,被公认为是解决当前环境和能源问题最有效的手段之一。到目前为止,研究人员已经开发了不同体系的光催化材料,高碘氧铋(Bi_5O_7I)在众多的光催化材料中脱颖而出,由于其内部独特的层状结构和潜在的光催化活性。然而,Bi_5O_7I宽带隙的特点限制
目前,能源短缺和环境污染问题日益严重。特别是随着金属冶炼、皮革等工业的发展,会产生含有难以降解的有机染料和重金属离子的污水。所以对于这些问题的处理迫在眉睫。太阳能光催化由于其反应条件温和、可持续性和无毒性等优点,在解决能源和环境问题方面受到广泛关注。到现在为止,已经开发出了各种各样的光催化剂,其中,多金属氧酸盐由于其优异的光化学稳定性、氧化活性和光电特性以及离散的分子结构而受到广泛关注。因此,本课