基于压力信号的循环流化床多尺度特性研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:yuesiyi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
压力波动已被证明与气固多尺度结构的动态行为密切相关,因此采用适当的分析方法从压力波动中提取关键特征信息,有助于理解循环流化床的多尺度动力学。为了充分认识循环流化床内的气固多尺度特性,本文使用一套综合型循环流化床冷模实验平台,在提升管Ug=5-9 m/s、Gs=100-800 kg/m~2s和下行床Ug=1-9 m/s、Gs=100-1000 kg/m~2s高密度操作范围内,详细研究了采样频率对压力波动特征的影响并确定了合适的采样频率。从实验角度分别模拟出仅体现宏观(介观、微观)尺度特性的操作条件,明确了引起相对应压力信号波动的主要频段,并以此作为压力波动多尺度分解的依据。进一步通过比较分解信号的动力特性差异识别了循环流化床内的多尺度结构,从频域上定量获得代表气固各尺度特性的压力信号并研究了气固多尺度结构的流动特性,最后对比分析了提升管与下行床在相同条件下气固多尺度流动特性的异同之处。提升管和下行床内压力信号的时域波动特性与采样频率fs密切相关。当fs较低时,压力波动较为缓慢。随着fs的增大,波动曲线中低频缓慢波动和高频急促波动并存,显示出压力波动是由多种气固动态行为引起的。进而对不同频域内压力波动特征进行研究发现,不同fs下压力低频成分(f<5 Hz)均表现出波浪形的周期性波动特点。而随着fs的增加,压力高频成分(f>5 Hz)逐渐能够完全反映气固介微观尺度下的行为,因此波动程度变大,提升管内压力高频成分的标准偏差Sd从10 Pa增加到30 Pa,而下行床内压力高频成分Sd则从20 Pa增至31 Pa。而且压力高频成分的波动曲线愈发密集嘈杂,表明fs对压力高频成分复杂程度产生了影响。最后利用近似熵对压力高频成分进行了复杂性分析。当fs=50-400 Hz时,提升管和下行床内压力高频成分近似熵均逐渐减小,而fs=400-1000 Hz时,压力高频成分近似熵则保持恒定,表明fs=400 Hz时压力高频成分可以完全反映出微观尺度行为的动力学特征,且可能受噪声的影响最小。因此确定压力信号合适的fs为400 Hz。从实验角度证明了气固多尺度结构确实能够分别引起压力不同频段的波动。当床层内只存在宏观气体流动时,压力功率谱在f<1 Hz的幅值较高,说明低频波动是引起宏观压力波动的主要因素。具有毫米级特征粒径的煤球渣颗粒在下行管中因运动、碰撞等行为使得压力功率谱在2-10 Hz内均出现多个峰值,因此由于介观尺度特性引起的压力波动集中在中频部分。弥散颗粒在下行管中相互碰撞对气体产生了扰动,使压力功率谱在50-200 Hz内出现多个宽谱峰值,因此由于微观尺度特性引起的压力波动主要集中在高频部分。上述结果为循环流化床内气固多尺度结构在压力信号频域上的量化提供了可靠的评价标准。进一步通过小波分析和递归分析对循环流化床中压力波动进行9尺度分解,通过表征和比较小波分解信号的动态特征识别了多尺度结构:1-2尺度细节信号(50-200 Hz)反映了气固微尺度特性,3-6尺度细节信号(3.125-50 Hz)反映了气固介尺度特性,7-9尺度细节信号和9尺度近似信号(0-3.125 Hz)反映了气固宏尺度特性。然后将子信号重构获得了宏观、介观、微观尺度的压力信号。通过宏观、介观、微观尺度压力信号的能量考察了提升管内气固多尺度结构的轴向分布特性及操作条件的影响情况。气固多尺度结构的轴向分布特性与颗粒浓度密切相关。颗粒浓度随轴向位置的增加逐渐减小,宏观颗粒浓度脉动程度、颗粒聚团破碎与聚并的强度、弥散颗粒碰撞剧烈程度沿轴向逐渐变低,提升管底部区域宏观、介观、微观尺度信号能量最高分别可达290488、1191、18577 Pa~2,并沿轴向逐渐衰减。在高密度条件下,多尺度压力信号能量沿提升管轴向的分布形式发生了变化,气固多尺度行为也变得更加剧烈。Gs的增大或Ug的减小都将使颗粒浓度升高,此时轴向高度14.06 m处的宏尺度信号能量涨幅最高可达2290%,宏观颗粒浓度脉动能力大幅增强;介尺度信号能量涨幅最高可达2366%,颗粒聚团破碎与聚并强度更大;微尺度信号能量涨幅最高可达1973%,颗粒接触机会增加造成颗粒碰撞等行为愈发剧烈。下行床多尺度压力信号能量沿轴向呈现出指数型或“C型”的分布特点。宏观、介观尺度信号能量随Gs增加而增大,轴向高度3.58 m处的能量涨幅最高分别可达5458、1846%。随Ug增加的变化趋势在不同Gs下存在差异,宏尺度信号能量在Gs<500 kg/m~2s时随Ug的增加而升高,而在Gs≥500 kg/m~2s时随Ug的增加而降低。介尺度信号能量在Gs≤600 kg/m~2s时随Ug的增加而增加,而在Gs≥800 kg/m~2s时随Ug的增加而减少。微尺度信号能量则对Ug和Gs的变化并不敏感。对提升管与下行床气固多尺度结构的流动特性在相同条件下做了比较。当Gs=100-300 kg/m~2s时,随着Ug的提高,下行床宏观颗粒浓度脉动能力与提升管逐渐接近,下行床颗粒聚团破碎/聚并的剧烈程度逐渐接近并超过提升管。就两个反应器的充分发展区而言,当Gs≤200 kg/m~2s时,提升管和下行床内弥散颗粒碰撞等行为强度相当,而当Gs≥300 kg/m~2s时,提升管内颗粒之间的碰撞更加剧烈。
其他文献
斜管是循环流化床、流化催化裂化反应-再生系统等典型流态化工艺中颗粒循环回路的重要组成部分,主要用作为将气固分离系统收集的颗粒输送到流化床或在两个流化床之间进行颗粒输送的管道,同时维持整个颗粒循环系统的压力平衡,保证整个工艺过程的稳定运行。斜管内颗粒输送过程的流态具有多样性,流态的转变易受斜管联接的垂直管高度、颗粒质量流率、松动风量等因素的影响,同时流态的转变会引起管道设备的机械振动。因此,研究不同
研究背景:骨质疏松症是一种退行性骨骼疾病,通常影响老年人群,尤其是绝经后妇女,并可能导致脆性骨折。为了保持适当的强度和完整性,骨骼经历不断的更新转换,使破骨细胞维持的骨吸收和成骨细胞引起的骨形成之间达到平衡。骨质疏松症是骨吸收超过骨形成的结果,其形态学特征是骨矿物质密度降低和小梁微结构破坏。骨质疏松症的发病机制受多种内源性和外源性因素的影响,包括衰老、体重相关的机械刺激、异常的矿物质和激素代谢以及
胚胎干细胞(Embryonic stem cells,ES cells)是取自胚胎发育早期囊胚内细胞团(inner cell mass,ICM)中的一类细胞,具有自我更新和分化两大特点。然而,作为发育生物学和再生医学研究的最佳模型,ES细胞自我更新和多能性维持背后的分子机制尚未完全被阐明,这也一直是ES细胞从基础研究到临床应用所面临的主要挑战。多梳(polycomb group,Pc G)蛋白是一
肿瘤仍是挑战人类健康的重大威胁之一。肿瘤的治疗方式从传统的外科手术、放射性治疗、化学治疗以及后期发展而来肿瘤免疫治疗等。肿瘤免疫治疗被认为是最有效的肿瘤治疗方式。但鉴于肿瘤高度异质性、免疫抑制等限制,目前肿瘤免疫治疗只能受益部分病患。纳米技术作为一种新兴技术,在生物医学领域被广泛应用,尤其是在肿瘤治疗领域。将纳米技术与肿瘤治疗相结合,利用纳米技术的独特性来克服肿瘤免疫治疗局限性,构筑肿瘤纳米-肿瘤
直链烷基苯中的2-十二烷基苯因其较好的生物降解性成为生产表面活性剂的重要原料之一。氯铝酸离子液体在催化苯与1-十二烯烷基化反应的催化剂中具有低温活性高、目标产品选择性高的特点。通常离子液体先引发1-十二烯产生碳正离子,再与苯反应生成直链烷基苯。本论文旨在通过离子液体先引发苯产生苯基碳正离子,进而与1-十二烯反应生成2位烷基苯含量较高的直链烷基苯。因此,研究离子液体能否引发苯环产生苯基碳正离子对苯烯
人机协作作为智能决策研究领域的核心问题之一,结合人的思维和机器智能,通过合理协作可产生更强的混合智能系统和更好的执行效果,因而受到国内外学者的广泛关注。在当前的人机协作领域中,如何充分利用不精确和不确定信息中存在的潜在价值,为冲突分析、任务分配、通道匹配等人机协作问题提供客观科学的决策支持,成为当前人机协作领域亟需解决的关键研究课题。三支决策理论和模型作为一种重要的粒计算与知识发现研究方法,能够考
丙烯是一种非常重要的基本有机原料,它的来源主要是源于石油蒸汽裂解工艺。传统的蒸汽裂解法对于装置运行要求高,经济成本大,同时会造成原料的耗费等问题,而且单纯进行工艺设备改进无法满足人们对丙烯日益增长的需求。在这种情况下,丙烯增产技术急需转型。相比于甲醇制烯烃、丙烯歧化等丙烯增产技术,FCC催化裂化工艺在我国炼油行业已经发展得很成熟,而且有着良好的设备基础,不需要大规模改进设备增设厂房等生产优势。故利
研究背景与目的胱天蛋白募集域蛋白9(caspase recruitment domain-containg protein,CARD9)为CARD家族中的一员,是迄今为止发现的最重要的免疫衔接蛋白之一。研究已证实CARD9蛋白的功能异常与多种疾病有关,如炎症性肠病、心血管疾病、肿瘤等。近年来,研究发现CARD9基因突变与真菌易感相关,临床上在真菌病患者中越来越多的CARD9基因突变被发现和报道。C
有机电子器件具有质量轻、可兼容于柔性衬底、可大面积制备等一系列优点,在集成电路、柔性显示、有机传感器等领域展现出非凡的应用前景。近几十年中,针对有机场效应晶体管(OFET)存储器件,研究者们做了大量的工作,取得了巨大的研究进展。然而,目前关于OFET存储器件的研究,仍然存在许多亟待解决的问题,远远未能达到实际应用的要求。鉴于此,本文从OFET存储器件结构的合理设计入手,为当前该类器件研究中存在的一
石油、气溶胶、各种水体由于其中的有机物高度混合的特征,统称为复杂有机混合物。碳元素在复杂有机混合物间循环,与能源、气候和环境息息相关。其中,水溶性有机质广泛存在于海洋、湖泊和地下水等各种水环境中,其形成机理和环境效应尚不明确,限制了人类对水溶有机质的治理和开发。水溶有机质分子组成复杂,迄今为止通过色谱等分离手段获取的分离度十分有限,通过高分辨质谱获取的分子组成定性信息受电离选择性影响也较为片面,定