相互作用的全息暗能量及精质的局域影响

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:p_pppoe
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
1998年超新星的观测发现宇宙正处于加速膨胀阶段,随后的诸多观测如威尔金森微波各向异性探测器、宇宙微波背景辐射、斯隆数字天宇测量和宇宙大尺度结构等天文观测数据均证实了这一现象。而推动这一加速的理论机制是需要宇宙含有一种具有负压强的介质,由于其在大尺度范围内不结团,弥漫在整个宇宙空间,所以被称为“暗能量”。为此,人们构造了众多的暗能量模型来描述宇宙的加速膨胀。最简单的是宇宙学常数模型,动力学标量场模型的状态方程参数可以随时间演化,还有通过改变时空的几何结构来实现宇宙加速膨胀的修正引力理论。近来,量子引力研究的一个重要结果——全息原理被应用到了宇宙学中,产生了全息暗能量模型。因为从本质上说,暗能量问题应该是一个量子引力问题,因此全息暗能量模型可能具有暗能量基本理论的某些重要特征。本文首先以一种具有一般形式的全息暗能量模型为基础,将其拓展到暗能量与暗物质存在相互作用的情形。在一定边界条件下,我们给出了相互作用模型中重要参数的解析形式和最佳拟合值。从其演化行为中,可见这种模型能够解决精细调节、宇宙巧合、因果性等问题,而且保持了全息暗能量一系列模型的形式一致性。此外,当考虑有效状态方程时,它同样可避免宇宙的大撕裂。然而,由于暗能量模型越来越多,对这些多样的理论模型进行敏感而有效的区分与鉴别就变得十分重要。Statefinder参数便是这样一种诊断方法。我们应用statefinder参数对上述的相互作用全息暗能量的行为进行了诊断分析,结果表明存在相互作用的全息模型更接近其他全息暗能量模型的行为方式,因此更具有代表性。另一方面,把暗能量看作一种宇宙组分,将其与Einstein场方程联合,能够处理一些局域引力问题,如一些有关黑洞性质的研究。我们利用Kiselev于2003年提出的一个Einstein场方程的静态球对称精确解,研究在包含quintessence暗能量的Schwarzschild时空度规下,双体系统中试验质量的运动轨迹及其轨道在某些条件下的进动角,以考察quintessence在局域引力场中的影响。随着天文观测技术的发展,这些结果可以作为探测暗能量是否存在的理论工具。
其他文献
实现“绿水青山”与“金山银山”的转换,“资源诅咒”是一个绕不过去的障碍。为此,文中提出运用超循环经济理论探索破解“资源诅咒”和践行“两山”理论的有效对策。研究表明,“绿水青山”和“金山银山”的关系,既不是对立和冲突的关系,也不是简单等同的关系;既不是折中、权衡和调和的静态关系,也不是单向转化的动态关系。要从根本上破解“资源诅咒”,就应当建立“两山”之间相互促进和互利共生的机制,这才是“两山”理论的
血小板异常激活引起的血栓形成是急性冠状动脉综合征(ACS)的主要病理机制。血小板相关指标作为反映血小板活化程度的重要生物学指标日益受到关注,其与ACS患者发生主要不良心血管事件的关系是目前研究热点。
目的:掌握马齿苋多不饱和脂肪酸(polyunsaturatedfattyacids,PUFAs)各成分相对含量并探究马齿苋纯化油对HepG2细胞脂质堆积的影响程度。方法采用气相色谱-质谱联用手段对马齿苋全草油以及纯化油的脂肪酸成分进行分析。利用MTT法测定不同马齿苋纯化油浓度对细胞存活率的影响并选定适宜浓度范围进行后续试验。通过油红O染色法判断油酸诱导建造的脂质堆积模型是否造模成功,并采用试剂盒测
国有企业对我国经济社会发展起到了十分关键的作用,而强化党的领导,加党的建设对国有企业做大做强做优显得尤为重要。本文主要对国有企业基层党建与生产经营融合策略进行研究,以强化党建在国有企业发展中的引领作用,以此促进国有企业的健康长期发展。
期刊
函数空间上的算子理论是算子理论的一个重要组成部分:一方面,函数空间提供了大量具有启发性的例子;另一方面,抽象空间上的许多问题可以模型化为函数空间上的具体问题,例如正规算子的结构就是借助于函数空间上的乘法算子得以清晰刻画的.特别地,源于数学理论自身发展和量子力学、控制理论等应用方面的需求,函数空间上的Toeplitz算子理论研究受到广泛关注.二十世纪五十年代,Paul R. Halmos以单侧移位算
在气-固两相分散体系中,微细介电粒子在电场作用下能够形成链状聚集体。例如静电粉尘收集,在静电场作用下微细粒子聚集成粗大粒子以便于收集,其中部分粒子聚集体的形状即为粒子链,由此可证明粒子链控制形成是可行的。如果粒子的聚集形态可以人为控制,那么在很多领域将会有重要的应用。本论文研究利用非均匀电场力控制气-固两相分散系中的悬浮介电性微细粒子聚集形态,分析和探讨了静电场作用下微细粒子链的形成和沉积过程,并
随着科学技术的发展,各种微/纳米器件的研究和应用日趋广泛。目前已有大量的力学实验表明:在微/纳观尺度下,材料的力学行为呈现出强烈的尺度效应。尺度效应的存在给微/纳米器件的结构设计提出了一系列新的挑战。经典连续介质力学的本构方程不包含任何与尺度相关的材料参数,所以不能预测尺度效应。梯度理论将具有长度量纲的材料长度参数引入本构模型,可以解释尺度效应,现已在微/纳观尺度下的金属材料、颗粒材料和复合材料等
本文研究的课题属于微分几何中的子流形理论.主要研究的内容包括:仿射四维空间的等积仿射曲面论;Lorentz复空间形式中Slant曲面论;任意伪黎曼空间形式中Lorentz曲面论.在第三章,根据Nomizu和Vrancken建立的R4中非退化等积仿射曲面的基本理论框架,我们研究了其中的极大曲面,局部对称曲面,以及仿射球的分类问题.在诱导联络平坦的假设下,我们完全分类了仿射极大曲面.在法丛平坦的条件下
伴随大数据时代不断发展,为制造企业供应链成本管理带来了新契机。目前,如何应用大数据信息技术优化制造企业供应链成本管控模式,已成为制造行业发展的关键议题。本文立足大数据视角,详细介绍大数据内涵及大数据技术,结合大数据背景下制造企业供应链成本管控现状,分析相关问题与原因,并提出了几点行之有效的供应链成本管控方案,希望能促进制造企业供应链成本工作朝向智能化、数字化、精细化等方向发展。
在科学研究和实际工程当中,我们遇到的许多问题都具有非均质以及多尺度的性质,如地下水在非均质地层介质中的渗流、复合材料中的热传导、非均质材料在外部载荷作用下的变形等。使用常规数值算法在解析介质非均质性的细网格模型上求解这些问题时,常常会由于自由度数太大导致计算量过大而遇到困难。因此,人们发展了许多种多尺度和升尺度算法,用以在适合进行数值分析的粗网格模型上求解这些问题,如多尺度有限元法(MSFEM)以