【摘 要】
:
第五代移动通信技术(5th Generation Mobile Communication Technology,5G)在人工智能、移动互联网等方面具有巨大的应用前景,而应用于该领域的印制电路板(Printed Circuit Board,PCB)在高频信号传输方面的传输频段、传输时间和传输损耗等方面都具有较常规PCB产品更高的技术要求。就PCB制造而言,在印制电路制造过程中实现对铜箔表面粗糙度的
【基金项目】
:
国家自然科学基金委项目(Nos.51801018和61974020); 珠海市创新团队项目(No.ZH0405190005PWC); 广东省重点领域研发计划项目(No.2019B090910003); 四川省科技成果转化示范项目(No.2019ZHCG0020);
论文部分内容阅读
第五代移动通信技术(5th Generation Mobile Communication Technology,5G)在人工智能、移动互联网等方面具有巨大的应用前景,而应用于该领域的印制电路板(Printed Circuit Board,PCB)在高频信号传输方面的传输频段、传输时间和传输损耗等方面都具有较常规PCB产品更高的技术要求。就PCB制造而言,在印制电路制造过程中实现对铜箔表面粗糙度的有效控制,是满足这些高技术要求的关键点之一,也是目前行业研究的热点。因此,对PCB制造中铜箔表面处理技术开展研究不仅具有科学意义,而且也具有工业生产应用价值。目前PCB行业现有的表面处理技术难以实现多层板层间结合力提升与高频传输信号损耗降低的两者兼顾。针对这种情况,基于铜在某些碱性体系中腐蚀速率低于现有PCB领域应用的棕化工艺的实验事实,本论文以Na2O2为铜氧化剂,通过添加硅酸盐、钼酸盐等组分来改善介质膜的化学组分与提高表面结合力等性能,形成了新型PCB基板铜箔表面碱性氧化处理技术。通过在PCB基板上形成有机—无机金属氧化膜层,实现了铜箔粗糙度与层间结合力的兼顾调控。该复合膜层是由Cu2O、CuO、CuSiO3和N-基有机物等物质桥接得到的,且该膜层具有良好的亲水性,可以在铜箔表面得到较小表面粗糙度的同时,使铜箔和介质层树脂间的结合力达到IPC–TM650标准。开发的PCB基板铜箔表面碱性氧化处理技术包括碱洗、酸洗、铜表面碱性氧化处理这三个部分。通过铜箔和介质层结合力性能研究和铜箔表面粗糙度测试,得到不同条件下的Na2O2体系铜表面处理技术处理铜箔的最优试验条件。在最优试验条件下,铜箔和树脂间的结合力可以达到1.20 N/mm,铜箔表面的粗糙度为0.22μm,该结果优于现有的棕化技术。通过测试在经过自主开发Na2O2体系铜表面处理技术处理后的铜面的电化学阻抗谱和极化曲线,探究了研究体系中处理液对铜表面的腐蚀机理。将最优试验条件下的Na2O2体系铜表面处理技术应用于30~50μm精细线路和六层高频印制电路板,得到较小的30~50μm精细线路的表面粗糙度,且在10 GHz至20 GHz高频信号区域内,相较于传统的棕化工艺,经过Na2O2体系铜表面处理技术处理后的信号要降低8 d B/m和14 d B/m。所以,Na2O2体系铜表面处理技术更适合高频印制电路板的制作,具有很好的发展前景。
其他文献
0.18μm BCD工艺主要用在小尺寸的直流/直流和交流/直流转换等领域,是目前应用于消费电子以及汽车电子等领域主流的BCD工艺之一,具有器件类型丰富,导通电阻低,成本经济等特点。随着功率市场的不断发展,基于成熟工艺的电压扩展可以帮助设计者以较低的研发成本扩大工艺平台的应用范围从而拓展市场,成为了目前BCD工艺迭代升级的发展方向之一。可集成功率器件LDMOS是BCD工艺中的核心器件之一,在功率集成
钽酸锂(LiTaO3)和铌酸锂(LiNbO3)拥有出色的各项性能,例如热释电、光电、压电等,从而具有很大的科研价值和广泛的应用空间。人们对于由LiTaO3和LiNbO3制成的各种器件的精确度、体积大小与探测器的功能要求在逐渐变高,除了制备优良的LiTaO3和LiNbO3材料以外,其微图形化也成为关键技术之一,因此,研究LiTaO3和LiNbO3的微图形化对于器件的制备技术的发展具有重要的理论意义和
粒子物理的标准模型假想的Higgs粒子至今没有在实验中被发现,电弱对称性破缺机制仍然是一个未解之谜。作为对电弱对称性破缺机制进行一般性探索的平台,电弱手征拉氏量是对电弱对称性破缺部分的一个既一般又经济的低能描述,特别是有效适用于那些强动力学电弱对称性破缺模型。电弱手征拉氏量的所有系数原则上都可以由实验固定。而因为强动力学的非微扰性质,人们很难把实验测定的电弱手征拉氏量系数与潜在的强动力学模型联系起
生物系统是一个复杂系统,各个尺度上都有许多独特的现象有待于人们去揭示其本质。在本文中,我们通过研究生物单分子、亚细胞和细胞尺度上的几个典型现象,包括单分子酶促反应过程中出现的等待时间呈多指数分布,在外力的作用下单分子酶促反应的平均反应速率呈现多种力的依赖形式,转录起始过程中发生的异常起始终止,细菌的温度趋向性,以及生物细胞群落在不断变化的环境中生存的适应性,发现这些现象表面上看似千差万别,但实质上
本博士论文主要研究以下三个方面的问题。1)直线上两个单位区间的并Uλ是否是满足开集条件的自相似集?本文给出了Uλ是满足开集条件的自相似集的充要条件:λ∈Λ:=∪n≥1Λn,Λn的定义见第3章第1节。进一步,我们对Λ的结构有如下刻画,集合Λ∩[0,2]由下面这些元素组成,0,1,2,以及下列词的谱:123132,12313424,wn = w1...w2n(n = 3,4,···),其中,wn定义为
随着人工智能、自动驾驶和人类行为识别等概念相继提出,固态激光雷达(Light Detection And Ranging,Li DAR)技术不再局限于导弹制导和地质勘探等军用和民用领域,并逐步进入商业消费品视野,这使得相关应用与需求更加广泛。基于雪崩光电二极管阵列(Avalanche Photon Diode,APD)的面阵激光雷达三维成像系统可以实现对单光子的接收与识别,表现出高的灵敏度与准确度
多目标跟踪是当今备受关注的课题,虽然当前已经有许多优秀的算法踊跃出来以解决多目标跟踪中的各种问题(遮挡、检测不精确、外观相似等),但是复杂场景下的多目标跟踪仍然存在许多问题。对此本文提出了几个方法以有效地处理复杂场景下的多目标跟踪问题。本文梳理了多目标跟踪当中的评测指标、多目标跟踪常用的数据集。由于当前多目标跟踪大多都是基于检测的跟踪,因此本文简单地介绍了目标检测的两个主流算法(R-CNN系列和Y
栅驱动电路(Gate Driver)主要用于对功率半导体器件的开关控制,目前应用的主流对象是Si材料器件,但随着GaN、SiC等第三代半导体材料在功率开关器件领域的逐步应用,对相应栅极驱动电路的需求将大大增加,因此对其关键技术的研究,在充分发挥功率半导体器件的独特优势、降低电路功耗、节约成本等方面有着重要意义。本课题的主要工作内容如下:重点研究600V半桥式高压栅驱动芯片,对其中自举以及电平位移等
传统的硅基晶体管制造工艺,通常要经过涂胶、曝光、显影及刻蚀等工序加工而成,不仅工序流程复杂,且成本昂贵浪费耗材。近年来,柔性印刷电子技术因其高速大面积、低成本、耗材少、绿色环保的优势,使得其应用在薄膜晶体管器件的工业制造领域具有潜在的价值。半导体性碳纳米管由于具有极高的载流子迁移率、优异的导热性和理化特性以及易于与柔性印刷工艺相互兼容等优势,使其成为制备柔性晶体管的理想半导体沟道材料。本文提出了一
本论文用第一原理方法对若干低维体系的性质进行了计算模拟,并对一些低维电子器件的设计提出了构想。首先,本论文研究了通过外界磁性掺杂和自身结构缺陷在III-V族半导体纳米管(GaN、BN纳米管)中引入局域磁性的两种模式:顶端Mn原子掺杂的GaN纳米管和开口的BN纳米管。对于第一种模式,用单个Mn原子替位Ga原子会在体系中引入4μB磁矩,这主要是Mn原子的3d轨道和其最近邻N原子的2p轨道的贡献。对于第