溶酶体靶向的咔唑基双光子荧光探针的设计合成及性能研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:yanyongchao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
小分子荧光探针在生物体系内具有十分广阔的发展前景,我们可以通过荧光探针更好的了解生物细胞内部的微环境变化情况,探针的荧光信号会随着细胞内部环境的变化而发生变化。小分子探针在生物成像方面优点突出,灵敏度高,对细胞的毒性也极低,有利于实现对细胞的长期监测。同时,我们可以对探针进行适当的设计,使其能够靶向响应不同的细胞器,也可以针对不同的细胞环境因素进行响应,如极性、粘度、p H等。荧光探针因此被更多的人关注到,并且逐步成为一种高效便捷的分析工具。极性是细胞微环境的一个十分重要的指数,细胞的活动以及很多生理反应都与之密切相关。细胞的不同状态对应着不同的病理和生理活动,细胞的状态出现变化时,极性也会产生变化。极性作为观察细胞状态的一个重要参数,已经被证明和很多生理过程联系紧密,如肽的聚集、蛋白质变性、膜融合和酶的构象变化。所以实现极性的精确检测是相当重要的,这将有助于人们更加清晰的了解很多疾病对于细胞的影响。具有AIE性质的荧光探针因其生物相容性十分优异,且对细胞的毒性十分低,能够在活细胞中完成精确的细胞器定位,已经被越来越多应用在细胞中。AIE荧光探针也能够在聚集状态下点亮,能实现高信噪比原位检测,在活细胞中保留时间长,能实现细胞内的长期跟踪,已经被广泛的用于细胞成像或者用来检测分析细胞内的离子、小分子。(1)设计开发了一种荧光探针PLW,探针PLW可用于检测极性,通过在咔唑母体上接入4,6-二羟基-2-巯基嘧啶基团、吗啉基团和4-氟苯乙炔基团构成PLW探针的分子,构造了一个D-π-A结构,形成了一个大的共轭平面。加强了咔唑母体和4-氟苯乙炔基团之间的联系,利用分子内电荷转移(ICT)机制,提高了对极性响应的速度和效率,强化了检测溶酶体极性的特性。在进行光谱测试时,我们发现在探针PLW在340 nm处激发下可以对极性形成较好的响应。又因为其生物毒性低的特点,所以该探针可以用于长期对溶酶体极性监测,也为今后的极性检测提供了一个有效的工具。(2)以咔唑为母体设计合成了一种能够靶向细胞内溶酶体的荧光探针PLF。为了实现可以准确定位溶酶体,在探针PLF分子中接入四乙烯吡啶基基团,将四苯基乙烯作为探针的AIE基团,各个基团之间可以形成一个较大的共轭系统。因为咔唑基团的优异性质,生物相容性较好,荧光信号强,光学稳定性好,所以有利于探针PLF分子透过细胞膜进入细胞内部。在生物测试时,利用探针PLF实现了溶酶体的精确靶向。通过实验数据我们发现其在生物细胞检测领域的巨大发展空间,可以成为溶酶体检测的一个理想工具。
其他文献
小麦赤霉病(Fusarium head blight,FHB)是全球最常见的小麦病害。当前,防治该病害主要通过筛选出有效的杀菌剂或组合降低其危害程度从而实现粮食品质和食品安全保障的目的。传统的药效评估是依靠人工来开展的,该方法费时、费力,且高度依赖专家的经验,常因专家意见滞后导致喷药不及时而耽误其有效防治。随着机器视觉、深度学习技术在各行各业的快速发展,这为化学药剂药效快速评价新方法的提出提供了重
可拉伸的线形超级电容器有望成为可穿戴电子产品的能量供应单元。然而,如何同时实现高能量密度、大延伸率、稳定的电化学输出、优良的集成能力和可洗性等目标对于可拉伸线形超级电容器来说仍然面临着巨大的挑战。为了实现上述目标,本文提出了一种“岛桥状”(RIB)的结构设计,用于制造新型可拉伸线形微型超级电容器阵列(WSS-MSCA)。通过卷起的MXene//CNTs@PPy非对称微型超级电容器(MSC)阵列作为
足迹作为一种重要的生物信息,有着十分广泛的应用。目前足迹特征提取更多依赖于传统特征提取方法和专家的经验知识,应用范围存在一定的局限性,不具有普适性。随着卷积神经网络的快速发展,在生物识别领域取得了显著的效果,一些研究人员利用卷积神经网络在足迹相关领域进一步展开了研究。根据不同人员足迹图像存在较大相似性的特点,同一人的不同足迹压力图像存在较大差异性。可将足迹识别归为细粒度识别问题。虽然目前有部分学者
生物数学研究的主要任务之一就是传染病动力学建模.结合传染病动力学知识,合理建立疾病模型,结合数值模拟,发现传染病传播的规律,得到传染病爆发和流行的重要原因,找到疾病防控的方法.本文主要研究的内容如下:第一部分,根据安徽省疾控中心提供的数据,查阅相关文献及使用统计学方法研究发现PM2.5对呼吸道疾病有影响.为此,建立受空气污染影响的非自治呼吸道疾病传播模型,并用传染病动力学知识对模型进行定性分析,得
在目前发展的众多电化学能量储存器件中,因具有低毒性、循环寿命长、充电速度快、功率密度高、安全环保等优良性能,超级电容器倍受科研人员的青睐。但是,低能量密度仍是其亟需解决的关键问题。设计合理的异质界面结构、引入缺陷工程或者与高能的电池材料相结合,是解决上述问题可行的方法。本文选择柔性碳布为基底,设计了具有异质界面的Co9S8@NiMn双金属氧化物纳米结构和具有氧空位缺陷工程的Co9S8@MnO2纳米
随着环境污染的加剧,石油、煤等化石燃料也日益开采殆尽,因此人们急于寻找一些可代替的清洁能源。在这个背景下,燃料电池(Fuel Cell)在预防大气污染、提供清洁能量以及新能源产业的快速发展方面起着不可比拟的重要作用。其中质子导体固体氧化物燃料电池(H+-SOFCs)作为全固态的燃料电池,是效率较高、对环境污染较小的发电方式。因此,H+-SOFCs被认为对治理环境污染有着很重要的意义。本论文旨在研究
社区获得性肺炎(Community-Acquired Pneumonia,CAP)是患者入住重症监护室(Intensive Care Unit,ICU)的常见原因。发达国家CAP的患病率远小于发展中国家,CAP患者入院治疗并发生死亡事件的几率在13%左右,而严重CAP患者的死亡率约达35%,其中30天的死亡率极高。利用电子健康记录(Electronic Health Record,EHR)中的数据
随着能源需求的激增和全球变暖的加重,可再充电的离子电池作为最有前途及最有效的电化学储能系统获得了大众的认可。其中,锂离子电池(LIBs)发展最为成熟,应用最为广泛,但由于金属锂资源短缺且分布不均,让它的大规模使用受到了约束。同一族的钾不但有相似的理化性质,而且资源更充足,因此开发高性能的钾离子电池(PIBs)更具有实际意义。而生物质材料成本低、来源广、环境友好,其衍生的硬碳材料在离子电池中更是体现
由于人类社会经济发展对能源的需求,使得全球能源消耗呈指数级增长,而化石能源的供应无法以一种可持续性的方式加以满足。此外,通过在空气中焚烧化石燃料来释放进入大气的各种有毒性气体,例如CO2,SO2,CH4和N2O,也是导致环境污染的主要影响因素。可再生能源中的太阳能利用成为研究方向之一,其中染料敏化太阳能电池(DSSC)成为光伏器件的研究热点。相比于其他太阳能电池,DSSC具有成本低、易组装、毒性低
温室效应、石油等不可再生能源危机慢慢地已经成为较为严峻的挑战。绿色能源的开发和应用化也早已成为人们普遍关注和需要棘手解决的问题。而锂离子电池作为电动汽车的核心技术,电池技术也已经在不断进步和改良。而近10年来,新能源汽车的高速发展有目共睹,在一定程度上缓解了能源危机问题。但是动力锂离子电池随着循环次数的增大,导致容量明显衰减;和一些不可确定因素使电池失效或发生安全事故问题,共同成为电动汽车在使用和