用于CMOS多功能收发芯片的放大器关键技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:eton8816
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来随着相控阵技术在军用雷达以及无线通信系统中的广泛应用,多功能收发芯片作为相控阵系统中的核心部件,受到了越来越多的关注。多功能收发芯片主要实现上下变频,幅相控制以及信号收发等功能。之前大多数的多功能芯片由Ga As工艺来制造,但随着硅基工艺的特征尺寸逐渐缩小,硅基工艺本身易于数字芯片相兼容,成本低等优势就渐渐吸引了人们目光。最近几年越来越多的研发人员致力于使用硅基工艺实现多功能收发芯片的高度集成化以及低功耗等目标。硅基放大器作为多功能收发芯片中的关键部分,具有击穿电压低、寄生效应大、高频性能差等缺点,为了解决上述问题,急需提出新型的电路结构来改善其性能,使其在满足高集成度的同时,实现低噪声,高增益和较高输出功率等优越的电路性能。因此本文基于SMIC 55nmCMOS工艺设计了三款放大器,均用于多功能收发芯片中,主要工作内容如下:1.设计了一款Ka波段的驱动放大器,针对由于频段过高导致晶体管增益滚降的问题,提出了晶体管堆叠技术,采用两级Cascode结构级联,达到了平坦增益和良好驻波的目的。针对晶体管跨导随温度变化较大的问题,提出了温度补偿技术,采用PTAT电压产生电路作为偏置电路,实现了增益随温度变化波动减小的目标。经测试结果验证:放大器在32GHz~38GHz频带内可以实现大于16dB的增益和11dBm的OP1dB。2.设计了一款Ka波段的功率放大器,针对硅基工艺单个晶体管输出功率有限的问题,提出差分功率合成技术,利用巴伦结构来实现,同时巴伦参与匹配电路设计,从而节省面积。为了降低密勒效应对于功放的影响,提出中和电容技术,改善了整体功放的稳定性和增益。为了进一步改善功放的效率,采用在巴伦上适当的添入LC谐振网络来实现逆F类的终端谐波阻抗。仿真结果验证:放大器在32GHz~38GHz频带内可以实现大于25dB的小信号增益,中心频率35GHz处OP1dB为16.6dBm,峰值PAE大于20%,所需频带内OP1dB均大于15.5dBm。3.设计了一款3~18GHz超宽带放大器,针对设计频段较宽的问题,采用峰值电感和RC负反馈结构等宽带匹配技术,同时为了减少功耗采用current-reused技术,为了调节输入匹配和放大器的噪声系数采用源极串联电感结构。经测试结果验证:在3~18GHz频带内实现了大于16dB的增益和10GHz处7.8dBm的OP1dB。
其他文献
信息技术的前进步伐不断加大,造就了集成电路产业的蓬勃发展,促使电子封装成为当前的热门领域,寻求性能优异的LTCC封装基板材料迫在眉睫。镁铝硅微晶玻璃因具有优良的性能逐渐成为关注的焦点,但是目前还存在烧结温度过高,难以和低熔点电极共烧以及抗弯强度与热膨胀系数不稳定等问题。因此,本文以镁铝硅微晶玻璃为对象,通过掺杂改性,研究了不同元素对本体系晶相组成、微观结构以及综合性能的影响,并对烧结和析晶过程进行
以InGaZnO为代表的氧化物半导体薄膜晶体管具有电子迁移率高、截止电流低、稳定性强、均匀性好、可见光透明和制备温度低等诸多优点,有望取代传统非晶硅和低温多晶硅成为下一代主流的薄膜晶体管。基于InGaZnO薄膜晶体管的电路不仅可以应用到显示领域,还可以应用于柔性电子、传感器等多个领域。由于p型氧化物薄膜晶体管的电学性能普遍较差,难以匹配n型氧化物薄膜晶体管的电学性能,故当前报道的基于InGaZnO
随着新一代的微波器件向着小型化、集成化的方向发展,YIG铁氧体材料的铁磁共振线宽、介电损耗、饱和磁化强度、居里温度等有关的综合性能需满足更高的性能要求。本文采用固相反应法制备目标YIG铁氧体材料,主要探讨低损耗YIG材料的实现途径及其应用。首先,研究缺铁量对YIG铁氧体材料物相组成、显微结构、电磁性能等方面的影响,研究表明:采用缺铁配方有助于减少铁磁共振线宽与介电损耗;过量缺铁会导致另相YFeO3
无线信息技术的发展对于通讯系统的性能提出了越来越高的要求。多功能及其集成化是目前通讯系统的发展趋势。通讯系统性能的提升对天线设计提出了更高的挑战。在此背景下,通过在同一辐射口径内集成不同性能的天线或者采用相邻天线共享部分辐射单元的方法来实现多通道或多功能子集系统融合的共口径天线对于解决通讯系统多频段、多极化、多波束以及集成化等需求有着显著的优势和广阔的应用前景。本文对共口径天线的研究动态进行了总结
中红外技术的开发与应用具有重要的战略意义,在军事、医疗与工业等领域均有广泛应用价值,而各种先进中红外材料及器件也成为该领域的研发热点。对比传统光学材料和器件,超表面可以在亚波长结构的基础上引入相位突变,通过对超表面单元的排布完成对电磁波的调控,具有结构简单、调控自由度高、兼容半导体工艺等特点,在实际的应用中具有极大的优势。通常超表面器件都只具有单一功能,并且在完成设计制备后很难进行重构,无法满足变
2017年Benalcazar在一种四方结构的晶体中连续地改变系统参数时发现拓扑角上的电荷出现了量子化现象并称之为四极矩绝缘体。四极矩绝缘体中的拓扑态局域在角上,不满足拓扑绝缘体常见的“体-边”对应关系。针对这种新型的拓扑态高阶拓扑绝缘体的概念被提出,近年来高阶拓扑绝缘体是凝聚态物理的一大研究热点。根据“体-边”对应关系,拓扑绝缘体中的拓扑态仅比样品低一个维度,而高阶拓扑绝缘体中的拓扑态比样品低了
本论文对SrO-V2O5系微波介质陶瓷进行了细致研究。为了降低烧结温度和提高陶瓷的微波介电性能,采用了钙离子掺杂、调节V元素的含量、添加硼酸钠等方法,在625℃~1000℃温度范围内分别合成了三种微波介电性能优良的陶瓷材料:Sr0.5Ca0.5V2O6、Sr2V1.90O7、Sr3(VO4)2+1wt.%Na2B4O7·10H2O。运用到X射线衍射分析、DSC-TG、SEM、TEM、拉曼光谱等分析
长时间、大强度运动可引起运动员运动性免疫抑制,导致上呼吸道感染和胃肠道感染的风险增加。作为一种安全的营养补充剂,益生菌在运动领域的应用日益增多。越来越多的研究表明,补充益生菌可提高机体免疫力,增强肠黏膜屏障功能,减少运动员上呼吸道感染和胃肠道疾病的发生率、严重程度和/或持续时间。本文综述运动员运动性免疫抑制的原因,可改善运动性免疫抑制的益生菌菌株/剂量的特异性及其在体育中应用的作用机理,并阐述其存
近年来,伴随着对可移动和轻便柔性器件的需求,人们对开发柔性器件在各个领域中的应用有着巨大的兴趣,其中在能量储存领域、生物医学领域、仿生领域等,人们已经有着较为深入的研究。柔性器件相关技术的发展和革新也势必会改变我们的生活方式。然而,目前鲜有关于柔性器件在瞬态传热方面的报道,柔性器件导热性能差的问题却一直阻碍着柔性器件进一步向轻型化、小型化、高集成化发展。本文针对上述问题,提出两种解决方案:一种是降
当今世界无线通信技术的发展对数据传输提出了更大的要求。太赫兹频段拥有大量未使用的频谱资源,且传输容量大,速率快,太赫兹通信研究从而引起人们广泛的关注,而对太赫兹天线的研究是太赫兹通信研究至关重要的环节。片上天线是为了解决太赫兹通信系统集成收发问题。但是目前太赫兹片上天线存在着带宽窄、辐射效率低以及实际增益低等相关问题。如何提高太赫兹片上天线的性能是一个亟待解决的问题。本文主要研究利用人工磁导体(A