用于大型望远镜次镜调整机构的高精度Hexapod平台设计与研究

来源 :山东理工大学 | 被引量 : 0次 | 上传用户:sumriver
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大型望远镜是人类探索宇宙奥秘,了解外太空未知世界的重要工具,也是衡量国家科技实力和经济力量的重要标志。在大型望远镜系统中,主镜和次镜的空间位姿极大影响了望远镜的成像质量。但是由于温度、气压及振动等因素,无法保证主次镜的相对位姿始终保持不变。因此,需要设计调整机构对主次镜的位姿进行调整。在实际研究中考虑到大型望远镜的体积、质量及能耗等问题,一般均旋转次镜作为调整对象。因此,对次镜调整机构相关技术的研究,是研制大型望远镜的重要课题之一。本文依托于空间技术研究院大型望远镜研究项目,展开了对大型望远镜次镜调整机构相关技术的研究。本文根据次镜调整机构高精度、高刚度的工作需求,设计了6-RRRPRR型并联六自由度Hexapod平台作为次镜调整机构。首先根据所采用的轴偏置虎克铰结构的运动特性,建立了基于空间圆辅助模型的运动学模型;接着,提出了基于空间圆最短距离求解的逆运动学求解算法,并针对丝杠螺母副产生的衍生运动误差,提出了补偿方案。然后,介绍了Brent求根算法,并将其应用至逆运动学求解算法。最后,建立了基于NewtonRaphson算法的Hexapod平台正运动学求解算法,并作为逆运动学算法的反馈机制。考虑到次镜调整机构需要在多坐标系下进行运动的工作模式,本文设计并开发了用于次镜调整机构的并联六自由度Hexapod平台坐标系系统。对平台的运动形式进行了归纳整理,提出了工具/工作坐标系的概念,并设计了平台在工具/工作坐标系下运行的控制算法程序及在自定义旋转中心下的平台运动学控制算法。最后通过仿真实验,验证了坐标系控制算法的准确性。经过理论研究及运动学控制算法编译之后,完成了驱动腿布局设计、元器件选型、电控系统设计等工作,最终搭建了用于大型望远镜次镜调整机构的高精度Hexapod平台实验样机。该实验样机的特点在于:驱动腿双端采用了改进的轴偏置虎克铰结构,该构型不仅增大了平台工作空间同时也提高了平台的控制精度。由于次镜调整机构要求具备微米级和角秒级的重复定位精度,本文首先对所提出的逆运动学控制算法进行了运动学仿真,并做了正向运动学验证,证明了所提出算法的准确性。同时,对已有的基于Newton-Raphson算法的逆运动学求解方法和本文提出的逆运动学求解方法进行了对比实验,以证明本文所提出的基于空间圆距离求解的6-RRRPRR型Hexapod平台逆运动学求解方法的高效性。最后,对实验样机进行了重复定位精度测试,证明了本文所设计的Hexapod平台完全满足次镜调整机构的使用条件。
其他文献
烧结钕铁硼作为常见的永磁材料之一,是由钕、铁、硼组成的四方晶系晶体,具有很高的磁能积。该材料的优点是制作成本低廉、体积小、能量密度高等;但其缺点也很明显,脆性大、难加工、热稳定性差。烧结钕铁硼属于典型的难加工材料,采用传统的加工方法加工困难。国内外学者对烧结钕铁硼的加工方法和加工后的磁学性能研究较少。本研究针对烧结钕铁硼材料的特点,利用电火花加工的非接触式加工方式,将磁场作为辅助手段,实现烧结钕铁
随着我国经济的迅速发展,电力需求量越来越大,电网的电压等级、系统容量等正逐年增加,尤其是近年来特高压输电工程的发展,对电力系统的供电可靠性提出了更高的要求。电力系统运行经验表明,大多数输电线路事故是由于雷击输电线路或杆塔引起跳闸所致的。降低输电线路的接地电阻是降低雷击跳闸率的有效措施。对于接地电阻超标的杆塔,许多降阻措施具有良好的降阻效果,但是在施工时需进行长距离开挖、占用杆塔周围大量土地,有时需
在碰撞发生时,汽车车身中的薄壁结构在瞬间增大的冲击力下发生压溃变形,有效的吸收了绝大部分能量,从而达到保护驾驶员的目的。因此,提升薄壁结构的耐撞性具有重要的研究意义。结构仿生学近年来在工程领域得到了广泛的应用。受樟子松的启发,本文结合结构仿生学的思想,设计了新型多胞薄壁结构,采用理论分析和有限元模拟的方法对该类结构在轴向加载作用下的耐撞性进行了研究,并对耐撞性较好的薄壁结构进行了多目标优化设计。考
金属零部件的失效往往源于磨损、腐蚀和划伤等表面损伤,因此,实现对零部件表面损伤的修复对资源的节约和经济的可持续发展具有重要意义。铜合金因其具有导热性好、高温易氧化以及对激光吸收率低的特性,使其零部件的修复存在很大的局限性。电火花沉积技术(Electro-spark deposition,ESD)由于具有对母材热输入小、成形层与基体呈冶金结合并且便携易操作的特点,常被用于零部件的表面修复。本课题首先
碳纤维/环氧树脂基复合材料长期以来以其比强度高、比模量大、热膨胀系数低、可设计性强、抗疲劳性好、耐腐蚀和结构尺寸稳定等特点被广泛应用于卫星飞行器的本体结构、太阳能电池板和天线等多功能结构件以及无人机和微电子设备等领域。碳纤维复合材料已成为衡量一个国家科技发展水平的重要指标之一。然而由于其导热和耐高温性能较差等缺点,越来越难以适应电子信息时代高频率和高集成化发展的要求。另外,纤维增强环氧树脂基复合材
作为一种金属复合材料,泡沫铝具有高比强度、高能量吸收性能的特性,这些特性可使其用于汽车制造业、航空航天等领域。然而,在制备泡沫铝材料的过程中需要对铝熔体进行增粘,而增粘过程中长时间的搅拌会造成铝熔体的过度氧化,且加Ca增粘生成的大量复合氧化物会降低材料的塑性。因此,本文在熔体发泡法制备泡沫铝的基础上,拟使用无增粘发泡技术,以发泡混合体替代单一发泡剂,实现泡沫铝材料在铝熔体无增粘状态下的发泡成形,主
当今世界经济快速发展,而能源与社会发展息息相关,由于传统化石能源在使用过程中会带来环境污染问题,因此,燃料电池、风能、光伏发电等清洁能源发电系统逐渐成为各国的研究重点。其中,又以光伏发电发展最为迅速,而并网逆变器是光伏发电系统的核心部件之一,在能量转换过程中具有重要作用。并网逆变器根据有无隔离变压器,可以分为隔离型逆变器和非隔离型逆变器,其中,工频隔离变压器成本高、体积大,而高频隔离变压器需要引入
随着电致发光材料的不断发展,有机发光二极管(OLED)材料因节能、成本低、发光稳定、效率高等优势被广泛应用于照明、显示等领域。第一代发光材料为传统荧光材料,根据自旋量子理论其激子利用率最高仅可达到25%。为了解决发光效率低的问题,科研工作者研发了第二代磷光材料,通过掺杂重金属增强单重态与三重态间的旋轨耦合强度,基于磷光材料制作的OLED内量子效率可以达到100%。磷光材料性能虽好,但重金属储量有限
说话人识别是一种通过声音进行身份认证的技术,该技术在国家安全和商业中有重要的应用价值,因此对其进行深入研究与实现具有极其深远的意义。在理想的实验条件下,可以控制语音的采集环境和传输信道,使语音数据拥有较高的信噪比和匹配的信道条件,从而保持说话人识别系统较高的性能。但是在现实场景中,语音采集过程容易混入环境噪声,并受到不同程度的信道干扰,系统的识别性能难以保证。因此,如何削弱环境噪声和信道干扰等因素
近年来,随着大量的非线性、冲击性和波动性负载接入电网,使电力系统出现了一系列电能质量问题,电能质量的下降对电力系统的稳定运行造成了严重的威胁。电能质量扰动的准确检测和识别是深入分析和研究电能质量扰动产生原因的基础,对保证电力系统的安全运行、减少国民损失具有重要的现实意义。本文主要从扰动信号检测、特征提取及分类三个方面对电能质量问题进行深入研究。阐述了电能质量问题的相关国际标准以及国内外研究现状,归