论文部分内容阅读
电子光谱是研究分子电子结构最重要的技术手段之一,并且常被用于在物理、化学、材料和生物等领域有着重要应用的功能分子的研究。与此同时,随着量子化学理论方法的不断发展和完善以及计算机技术的巨大进步,理论计算不仅在功能分子的基态性质研究方面取得巨大成功,而且在它们的电子光谱和激发态性质研究中也发挥着越来越重要的作用,对于理解它们的电子结构和光学性质以及理性设计新型功能分子具有十分重要的意义。密度泛函理论和含时密度泛函理论分别是计算基态和激发态最流行的理论方法之一。然而,目前在电子光谱理论研究中仍存在诸多挑战,比如如何合理模拟小分子振动分辨电子光谱,以更好体现原子核的振动对光谱的影响;如何对于具有中、大尺寸体系的功能分子电子光谱进行高效和准确预测;如何正确体现外部环境对功能分子电子光谱的影响。因此,针对上述存在的挑战,本论文以若干空间尺度从小到大的功能分子作为研究对象,聚焦于上述分子体系电子光谱的理论表征,主要基于密度泛函理论和含时密度泛函理论,同时结合分子动力学模拟或核系综方法,致力于探索和发展合适的理论模型和方法,计算和模拟上述功能分子的电子光谱。本论文研究内容在体系和方法上体现“多尺度”,同时分别代表理论计算中三种常见的外部环境,即气相、隐式和显式溶剂环境。一方面可以解释实验光谱,有助于理解功能分子电子结构和性能间的关系,从而为合成和设计新型功能分子提供理论指导;另一方面基于实验结果逆向验证理论模型的可靠性,使得本论文的研究方法也可以拓展应用于研究其它类似体系的电子光谱。本论文共由六章组成,具体内容如下:第一章,介绍了本论文的研究背景、研究意义和研究内容,并对本论文研究的功能分子以及电子光谱理论基础作了简介。第二章,介绍了本论文涉及到的计算化学理论基础,包括量子化学、分子动力学和核系综方法,并重点介绍了密度泛函理论的发展和现状。第三章,基于含时密度泛函理论和核系综方法理论模拟了小尺寸功能分子NaS5-和P2N3-气相阴离子光电子能谱。创新之处在于引入核系综方法体现原子核振动对光电子能谱的影响以及引入基于含时密度泛函理论计算的Dyson轨道来合理表征电离强度。研究结果表明,模拟得到的NaS5-和P2N3-阴离子光电子能谱与各自的实验光谱吻合得较好,其中电离能误差在0.2 eV以内,并且电离强度也与实验基本一致。特别是,发现核振动效应对于具有刚性结构的P2N3-阴离子光电子能谱尤为重要。第四章,基于含时密度泛函理论研究了中、大尺寸分子体系的荧光配体分子和基于配体-金属自组装的超分子金属杂环的电子吸收光谱。研究结果表明,最优化调控区间分离泛函LC-ωPBE*计算得到的理论光谱很好地重现了实验光谱,吸收波长误差在10 nm左右,光谱相似性因子均在0.97以上。该研究为超分子配位化合物领域的电子光谱模拟提供了一种可靠、高效的理论工具。第五章,基于分子动力学模拟和含时密度泛函理论的多尺度模拟方法研究了两种近红外二区荧光分子的电子吸收光谱和发光特性。通过分子动力学模拟体现水或甲苯溶剂对荧光分子结构的影响,基于上述获得的多帧结构计算得到了吸收光谱。研究结果表明,理论模拟光谱和实验光谱吻合,能够正确反映在水溶液中光谱红移的现象。该研究中对多尺度模拟方案的探索可以为今后研究其它复杂体系的电子光谱提供有益的指导。第六章,对上述研究内容进行了总结以及对未来相关工作进行了展望。