论文部分内容阅读
随着科技的不断发展,硼作为一种重要的化工原料其应用从传统工业领域不断向现代工业领域扩展,硼资源的需求量逐年增加,硼矿开采已不能满足市场需求。我国盐湖资源丰富,其中含有的硼资源长期以来未得到有效开发和利用,因此开发利用液态硼资源来弥补当前的硼矿资源短缺状况越来越受到研究者的关注。另外,从减少环境污染,维持动植物生长发育的角度来说,液态提硼也具有重要的意义。吸附法作为一种有效的液态提硼方法,相比于其它提硼方法具有操作简单,吸附量大,选择性高等优点而倍受关注。本文通过阳离子聚合的方法得到一种一维聚合物纳米纤维,该一维聚合物纳米纤维具有制备过程简单、交联度可控,可批量生产等特点,为硼吸附剂的制备打下了有利的基础。我们以这种聚合物纳米纤维为基质,通过接枝N-甲基-D-葡甲胺(NMDG)、氨基丙二醇(APD)和三羟甲基氨基甲烷(TRIS)三种功能基团,制备出三种不同的硼吸附剂。同时,又对葡甲胺类吸附剂进赋磁,得到的硼吸附剂在外加磁场作用下能够进行有效的分离。具体工作如下:1.以氯甲基苯乙烯(VBC)和二乙烯苯(DVB)为原料采用一步阳离子聚合的方法批量合成了一系列不同尺寸的聚合物纳米纤维。以该聚合物纳米纤维作为基质,NMDG为功能基团对其进行改性,得到硼吸附剂Poly(n/m)-NMDG,通过红外(FT-IR)、元素分析(EA)、扫描电镜图(SEM)、吸附和循环稳定性测试筛选出最佳比例的聚合物纳米纤维Poly(5/1)作为基质。通过探讨外界因素(溶液pH、浓度、时间等)对吸附剂Poly(5/1)-NMDG吸附性能的影响,得出:当溶液pH为9时,吸附剂的吸附效果最佳;等温吸附实验表明,吸附剂的吸附过程符合Langmuir等温吸附模型,理论最大吸附量为18.29 mg/g,与实验结果(18.15 mg/g)一致;动力学吸附实验表明,吸附过程符合准二级动力学吸附模型;钠、钙、镁等阳离子,对吸附剂的选择性具有干扰作用。除此之外,我们对Poly(2/1)进行赋磁,制备出磁性吸附剂Poly(2/1)@Fe3O4-NMDG,硼吸附量为5.4 mg/g,外加磁场作用下可实现吸附剂的有效分离,为吸附剂的分离和回收提供了一条有效的途径。2.以Poly(5/1)为基质,APD为功能基团,制备了Poly(5/1)-APD吸附剂。通过FT-IR、EA及SEM表征,证明聚合物成功接枝上了功能基团APD。通过探讨外界因素(溶液pH、浓度、时间等)对Poly(5/1)-APD吸附性能的影响,得出:当溶液pH为8时,吸附剂的吸附效果最佳,吸附量达8.9 mg/g;等温吸附实验表明,吸附剂的吸附过程符合Langmuir等温吸附模型,理论最大吸附量为7.68 mg/g,与实验结果(8.00 mg/g)一致;动力学吸附曲线表明,吸附过程符合准二级动力学吸附模型;循环吸附四次之后,其吸附量仍能保持在85%左右;吸附剂Poly(5/1)-APD对溶液中硼的吸附性能受钠、钙、镁等干扰离子的影响明显。3.以Poly(5/1)为基质,TRIS为功能基团,制备了吸附剂Poly(5/1)-TRIS。通过FT-IR、EA及SEM表征,证明TRIS功能基团被成功接枝到聚合物基质上。同样通过探讨外界因素(pH、浓度、时间等)对吸附剂Poly(5/1)-TRIS吸附性能的影响,得出:当溶液为中性时,Poly(5/1)-TRIS对硼的吸附效果最好,吸附量达9.7 mg/g;等温吸附实验表明,吸附剂的吸附过程符合Langmuir等温吸附模型,理论最大吸附量为10.13 mg/g,与实验结果(9.80 mg/g)一致;动力学吸附曲线表明,吸附过程符合准二级动力学吸附模型。循环吸附四次之后,其吸附量保持在87%左右。当溶液中钠、钙、镁干扰离子的浓度很低时,对吸附剂的选择性影响不大。