【摘 要】
:
二氢烟酰胺腺嘌呤二核苷酸(NADH)及其氧化态(NAD+)是普遍存在于真核生物和原核生物中的重要辅酶,参与生物氧化还原过程,并在细胞物质代谢以及能量代谢过程中发挥关键作用。NADH是由烟酰胺、腺嘌呤和两个核糖环通过焦磷酸盐桥的连接所组成的,通常会以游离的折叠构象和与蛋白质相结合的展开构象两种形式,动态平衡地存在于水溶液中。在生物体内,一些金属离子对NADH所参与的酶促反应具有非常重要的作用。其中人
论文部分内容阅读
二氢烟酰胺腺嘌呤二核苷酸(NADH)及其氧化态(NAD+)是普遍存在于真核生物和原核生物中的重要辅酶,参与生物氧化还原过程,并在细胞物质代谢以及能量代谢过程中发挥关键作用。NADH是由烟酰胺、腺嘌呤和两个核糖环通过焦磷酸盐桥的连接所组成的,通常会以游离的折叠构象和与蛋白质相结合的展开构象两种形式,动态平衡地存在于水溶液中。在生物体内,一些金属离子对NADH所参与的酶促反应具有非常重要的作用。其中人体外金属铝离子(Al3+)和人体内金属镁离子(Mg2+)对生物磷酸盐都具有良好的亲和力,因此在水溶液中,Al3+和Mg2+会以双配位单齿形式优先配位NADH焦磷酸盐桥羟基上的两个氧原子,产生两个强离子键,进而影响NADH相关的生物化学性质。本文采用紫外-可见吸收光谱和稳态荧光光谱,结合时间相关单光子计数(TCSPC)技术,研究了金属离子对水溶液中NADH的本征荧光光谱和分子构象变化的影响。主要的研究工作有以下两部分:1、研究了水溶液中铝离子与NADH分子的相互作用。证实了NADH分子与Al3+会以1:2的浓度比相结合,并且会使得NADH分子的构象从展开态转变为折叠态,导致NADH本征荧光寿命增加,从而发生荧光增强的现象。同时,首次采用NADH本征荧光寿命振幅比的研究方法表征了NADH在溶液中的两种主要构象形式。2、研究了镁离子与NADH分子的相互作用。结果表明,NADH分子与Mg2+在水溶液中主要以1:1的浓度比进行结合,结合后形成稳定的不发光的络合物,导致NADH本征荧光发生静态淬灭,从而产生荧光减弱的现象。随后,在甲醇和乙醇两种不同的溶剂环境下,发现Mg2+对于NADH分子构象的变化没有产生影响。本文的研究工作,不仅有助于进一步理解金属离子在生物酶催化反应中所起的作用,还可以有效地将生物体内源荧光团分子应用于各类生产活动中金属离子浓度的检测。因此,研究金属离子对NADH分子荧光动力学的影响,具有重要的生物学意义和指导性价值。
其他文献
作为人和动物所必需的八种氨基酸之一,色氨酸在其生长发育和新陈代谢过程中起着重要的作用,并被广泛应用于医药、饲料添加剂、环境监测等领域。研究表明,色氨酸和一些生物分子之间能够发生荧光共振能量转移,分析这种作用下的色氨酸的荧光寿命分布以及分子间的能量转移效率能够观察到生物体细胞内的代谢活性变化等现象。然而,生物体内的色氨酸主要以单体色氨酸和多种蛋白质内色氨酸两种结构类型存在,是否这两种类型的色氨酸都能
近年来,随着激光共聚焦和生物荧光成像技术的迅速发展,生物荧光成像技术在化学、环境科学、生物、医学和药学等各个领域中发挥着重要作用。荧光探针是生物荧光成像技术的重要化学基础,实现生物荧光成像这一技术的关键之一在于荧光探针的设计与合成。研究表明,第四主族硅元素替换氧杂蒽结构中的桥连氧原子后,所合成的硅基取代罗丹明分子具有最大吸收和最大发射波长均位于近红外区、光稳定性好等诸多优势。因此,在荧光染料分子构
水稻是人类主要的粮食作物之一,广泛种植于世界各地的耕地,目前我国一直也是食用稻米的消费大国。各种非生物胁迫,例如低温、干旱、高盐等对水稻的影响贯穿整个生育期,决定了其产量和品质,最终会带来严重的经济和社会危机。在长期的进化过程中,水稻已具备了各种快速感知和应对外界环境波动的策略。因此,研究和利用水稻响应外界胁迫的适应性,提高水稻的抗逆性,培育具有强耐受性的水稻新品种,在不良环境下保证粮食产量显得尤
攀西干热河谷区是地球上环境最为恶劣的地区之一,严苛的气候条件,导致攀西干热河谷极不适宜植被生长,分明的干湿季,造成土地荒漠、沙化现象严重,生态治理面临巨大的困难与挑战,当地的生态环境、社会经济发展受到极大的限制。植被的恢复与重建是该区域生态治理的基础,土壤是植被恢复效果评价的重要因素。巨菌草(Pennisetum sp.)作为一种优质多用途草,被引种作为该区域植被恢复物种,表现出了良好的适应性。为
稻瘟病作为危害水稻生产和品质的三大病害之一,每年因为稻瘟病引起的水稻粮食产量减少达到了将近30%。目前,抗性品种的培育和化学农药的施用是防治稻瘟病的主要手段。由于稻瘟病菌非常容易发生变异而形成新的生理小种,培育抗性水稻的周期又过长;而化学农药对人类健康和环境安全的危害严重,因此,寻找有效的、环保的稻瘟病防治手段对于粮食安全至关重要。利用生物及其代谢产物的拮抗作用来防治农作物的病虫害的生物防治手段由
一个发育完整且良好的根系系统可以为地上部分提供一个稳定的平台,研究小麦根系对小麦的遗传改良至关重要。根系基因GNOM1是在水稻中正向调节籽粒大小和粒重的重要基因,而我们对其在小麦中的同源基因Ta GNOM1知之甚少。本研究对Ta GNOM1基因进行了基因结构分析、蛋白结构分析、进化分析、启动子区域分析以及表达模式分析。此外,本研究对大麦(Hordeum vulgare)、水稻(Oryza sati
四川小麦地方品种-开县罗汉麦3AL染色体臂含有一个天然隐性Ph基因ph-KL,能够诱导其与黑麦或易变山羊草杂种F1的部分同源染色体配对。但是ph-KL在六倍体背景下促进部分同源染色体配对能力还不清楚。本研究以含有6VS.6AL罗宾逊易位系Pm99915-1为外源供体,中国春(CS)ph1b为对照,以原位杂交(FISH和GISH)与分子标记为检测技术,评价ph-KL是否能诱导6VS和6AS配对重组。
近年来,图画书在少儿市场中的比重也不断提升。作为图画书典型代表的绘本在悄然之间进入很多家庭,甚至走进了校园,深受学生欢迎。绘本独特的教育价值也正在被学校和一线教师所了解,很多教育较为发达的地区都对绘本阅读教学进行了深入的探究与实践。但对于低年级学生来说,受生理和心理的制约,绘本阅读能力还有待提升。特别是一些农村乡镇小学,亲子阅读普及程度不够,学生的阅读兴趣和能力培养的主阵地还是在学校,因此一线教师
大麦nud基因是控制大麦皮裸性状的关键基因。与大麦一样,栽培燕麦也根据籽粒性状分为皮燕麦和裸燕麦。为探明燕麦nud同源基因与燕麦皮裸性状之间的关系,本研究采用同源克隆方式对燕麦中的nud同源基因进行克隆,并对其功能进行预测,同时对燕麦属不同物种的nud基因序列进行分析,并基于获得的序列对燕麦属不同物种间的亲缘关系进行了探究,主要研究结果如下:1.燕麦属物种中nud同源基因(nud-like)长度介
小麦(Triticum aestivum L.,2n=6x=42,AABBDD)是全球种植最广泛的作物之一,更是人类的主要粮食作物。目前,全球的小麦遗传改良均面临着遗传资源丰富度的瓶颈问题。为提高普通小麦的产量、抗性和品质,大量的小麦外源物种被广泛挖掘和利用。华山新麦草(Psathyrostachys huashanica Keng ex Kuo,2n=2x=14,Ns Ns)作为我国特有物种,蕴