石墨烯和低维铁电材料的结构、性质及其调控的理论研究

来源 :清华大学 | 被引量 : 0次 | 上传用户:qunimad41197579
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低维材料是凝聚态物理和材料学领域的一个重要研究热点。量子限制、表面和界面效应使之具有三维体材料所没有的新奇量子特性。随着电子器件高度集成化和小型化的发展,低维新材料也将在下一代电子学器件中产生重要的应用。基于第一性原理方法,本论文系统地研究了石墨烯和低维铁电材料的原子结构、电子性质及其调控的方法,论文主要内容如下:通过制备石墨烯纳米带打开石墨烯能隙是解决石墨烯在未来电子学器件应用问题的一种方法,我们提出了通过可控氢化改变碳纳米管的π电子的边界条件的方式,实现石墨烯纳米带电子结构的重现。氢化的碳纳米管亦表现出和石墨烯纳米带相同的自旋极化边缘态和对称性依赖的量子输运特性。功能化石墨烯是解决石墨烯大面积生长和商业应用的一种重要途径。我们对于其电子结构的研究发现不同的功能化基团的吸附浓度和吸附构型决定了其电子结构为半导体型或金属性,这也是由于π电子的边界条件所决定,完美地解释了实验中对电导率测量的争议问题。碳化硅外延生长石墨烯是制备高质量石墨烯的一种关键手段。通过对碳化硅外延的石墨烯表面氢化处理而形成的界面磁性对于石墨烯的自旋电子学器件具有潜在的应用价值。我们研究了氢化外延石墨烯的界面磁性机制并提出了一种通过改变衬底碳化硅结构来调控界面磁性的方法,该机制的普适性也对于其他半导体异质结构的界面磁性提供了理论指导。以钛酸钡为代表的铁电材料在多铁异质结构中的应用对于高密度磁存储器件的发展具有重要意义,而铁电表面的结构和电子性质的调控对于异质结构的界面性质具有很大的影响。我们研究了铁电极化反转对铁电表面相图的影响,发现不同铁电极化条件下,表面稳定结构将发生变化,因此提出了一种通过加外电场来调控铁电材料表面结构的物理机制。
其他文献
航天电子设备的可靠性评估已成为近几年我国航天电子产品关键技术研究的新趋势和热点。电子电路系统作为航天电子设备的中枢,整个设备的可靠性评估核心是对电子电路系统的可靠性进行准确的评估。通过重要度分析确定系统的关键部位并找出薄弱环节是评估、提高电子电路系统可靠性的重要手段,是航天电子设备提高性能的基础方法。目前科技发达国家通过控制电子电路中的相关参数已实现整机可靠性和寿命的控制,而我国对复杂电子电路系统
航空业是公认的国家总体综合国力的一大标杆,在如今科技高速发展的背景下,保质保量的制造和加工出高精密的符合当前科技水平要求的航空业零件是个不小的挑战。在航空结构件加工过程中,刀具作为重要的终端部件,刀具磨损状态影响着加工的精度、效率及经济效益。因此,实现航空结构件加工过程中刀具磨损状态的实时在线监测具有重大意义,能够大大提高切削加工的生产效率和质量、降低生产成本。尽管关于刀具状态监测开展了大量研究工
航空发动机涡轮叶片在发动机运行时需要经受住高温、高压、高离心率、热应力、剧烈震动的影响,而在这种极端环境中,随着使用时间的累积,叶片很容易出现损坏失效,进而引起发动机的故障。所以为了减少故障产生造成的安全事故,需要准确且及时地监测工作状态下的涡轮发动机叶片等高温部件由于振动产生的应变。本文采用直流磁控溅射方法和电子束蒸发方法在Ni基高温合金基片上制备了多层结构/功能一体化的PdCr高温薄膜应变传感
叶片作为航空发动机关键部件对发动机性能起决定性作用。叶片大多由钛合金等难加工材料构成,在加工过程中要保证其复杂几何形状的叶片具有极高的表面质量和尺寸精度,是一项极具挑战性的任务。现有的制造工艺主要采用高精度铣削和砂轮或砂带磨削相结合的方法。但砂带磨抛钛合金叶片中存在加工质量难以保证,易发生烧伤,材料去除率不高等问题。针对以上问题在常规砂带磨抛中辅助加上超声振动,进而以提高材料去除率。首先通过对超声
随着物联网的不断发展,数据吞吐量急剧增加,系统对存储器性能的要求日益提高。基于低维功能材料的纳米器件可极大地缩小器件尺寸,进而提升存储密度。二维材料不仅在纵向上具有原子级尺寸,且具备良好的光电子特性,因此有望实现这一愿景。为探究新型二维材料在存储器件方面的应用潜力,本文从材料生长和器件制备两方面入手,开展了以下工作:1.通过物理气相沉积(Physical Vapour Deposition,PVD
随着大型计算机、人造卫星、移动基站、便携式电子设备、车载电子系统及医疗电子等的迅速发展,促进了微波介质陶瓷的发展;随着对电子器件和系统的高频化、高集成化、小型化、高可靠性、高性能及多功能等要求越来越高,低温共烧陶瓷(LTCC)技术由传统的高温烧结陶瓷(HTCC)发展而来,LTCC技术是实现这些需求的重要手段。LTCC具有介电常数多样化、介质损耗低及烧结温度低等特点,能与电阻率低的银共烧是其相对HT
本文以3-PRRU并联主轴头为研究对象,研究了该机构的运动学、静力学、静刚度、动态特性和铣削稳定性,在基于3-PRRU并联主轴头的五轴混联机床上开展实验,验证了相关理论的正确性。对3-PRRU并联主轴头的运动学、静力学进行分析,研究得到了该并联机构的运动学求解和各铰链内力。为进行运动学分析,简化支链中各部件,通过各运动支链的矢量环建立运动方程和约束方程,进而得到运动学求解。建立各支链的杆件和动平台
本博士论文研究的主要内容为丛代数间的态射(根丛同态)和2-Calabi-Yau三角范畴中的丛结构。特别地,研究了丛代数到其自身的保持丛突变的双射(丛自同构),以及这些双射构成的群,即丛自同构群。我们在第一章和第二章分别叙述引言和列出一些预备知识。第三章将研究根丛代数以及根丛同态[1]。我们将给出一个非理想丛态射的例子,该反例澄清了[1]中的一个疑问。然后对一个种子引入冰化的概念,以此证明单的根丛同
强相互作用物质的相结构和对称性对研究QCD理论、发展其处理方法、探索强相互作用下的物质形态具有重要意义。其中同位旋物质因其丰富的相结构而受到广泛的关注,在自然界中人们猜测其可能存在于致密星体内部,在实验中可在中低能重离子碰撞中产生。在理论上,可以通过格点QCD模拟以及各种有效模型计算进行研究。本文用QCD有效模型Nambu–Jona-Lasinio模型研究有限温度有限同位旋化学势下强相互作用系统的
随着信息技术的发展,模数转换器(ADC)的应用日益广泛。而在诸如雷达、超宽带通信系统、高性能数字示波器等产品中,模数转换器的速度性能通常是整个系统性能的瓶颈,因此高速ADC的研究备受重视。当前,高速ADC所采用的工艺一般可分为CMOS工艺与HBT工艺。与CMOS工艺相比,HBT工艺有着更快的电子迁移率、更好的器件匹配性能、更高的晶体管截止频率等优点,特别是In P HBT工艺,十分适合用于高速电路