四川盆地降水日变化的个例模拟与诊断分析

来源 :第29届中国气象学会年会 | 被引量 : 0次 | 上传用户:cys_1688
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  四川盆地位于我国110°E 以西的,南面是云贵高原,西面青藏高原,北邻秦岭高地,受特殊的地理环境影响,夜雨成了四川各地降水日变化的常见特征之一,由于盆地所属地形复杂,数值模式的预报效果较差,尤其是对降水过程的雨区和雨量的预报.四川地区独特的地理位置和降雨特征,使得这里长期以来成为研究地形影响天气气候、检验数值模式的地形处理技术的理想对象.降水日变化的研究是目前重点关注的核心科学问题之一,能否合理模拟降水日变化及其形成机制又是评估模式性能的重要内容.因此模拟四川盆地降水日变化的特征具有重要的意义.本文利用新一代中尺度数值预报模式WRF 模式(WeatherResearch and Forecasting Model)模拟了2008 年9 月23~24 日发生在四川盆地的夜间暴雨过程,侧边界和初始场采用NCAR/NCEP 水平分辨率为1°×1°的再分析资料,暴雨发生空间区域分辨率设为12km,时间分辨率设为72s.在模拟结果与常规观测资料的进行对比检验模式性能的基础上,对模式输出的多个物理量进行诊断分析,从而讨论四川盆地降水日变化的形成机制.得出的主要结论如下:(1)WRF 模式较好地模拟了四川盆地此次降水过程的时空分布特征,特别是在24 小时降水雨带位置和降水日变化规律的模拟上,比较合理地模拟出了降水日变化峰值发生在午夜的特征.(2)通过这次天气过程的模拟研究发现,四川盆地降水日变化特征与其地形有密切关系,并受到亚洲大尺度环流场与中尺度环境下动力与热力条件配置结构的影响.强烈的偏东气流带来充足的暖湿空气进入到四川盆地,受到西部地形阻挡作用在盆地内形成水汽汇聚区,这种作用在前半夜开始增强,同时新疆北部冷槽分裂的冷空气不断南下,造成盆地大气层结不稳定,后半夜随着温度的下降,导致高空水汽凝结产生降水,形成此次夜间暴雨的日变化现象.
其他文献
利用山西省68 个气象台站近48a(1961~2008)的逐日降水资料,采用线性趋势分析、Morlet 小波变换以及合成分析等统计方法,分析了山西省暴雨发生次数(日数)的时空分布特征及其变化规律。结果表明:全省暴雨发生次数存在由南向北递减的空间分布特征,暴雨主要集中在太行山以南的晋东南一带;在季节分布上,暴雨主要出现在汛期(5~9 月),特别是主汛期(7~8 月)是全省暴雨最集中的时段;在旬际分布
利用T639 1°×1°分析场、FY-2 红外云图及红外辐射亮温(TBB)、多普勒雷达和气柱水汽总量等资料,对2011 年7 月2—3 日发生在山西境内的区域性暴雨进行多尺度特征分析,发现:副高北上,西南暖湿气流加强,东北冷涡后部冷空气南下,山西北中部锋生是这次区域性暴雨发生的大尺度环流特征.分析结果表明:(1)山西中部暴雨由2 个β中尺度对流云团生成,且在边界层2 条中尺度切变线附近触发对流发展
利用常规气象观测资料、雷达资料、1.0°×1.0°NCEP再分析资料,针对影响山东的2007年7月18日和2011年7月2日两次全省性大范围夏季暴雨天气过程,通过从水汽输送、动力结构、大气稳定度和雷达特征等方面进行了对比分析.结果表明:副热带高压控制华南地区,其脊线在22°~25°N附近,东北和华南同时存在低涡或闭合低压环流,且有低层有西南暖湿急流建立时,山东易有全区性暴雨.水汽输送和辐合强弱与暴
采用逐日降水资料和ncep/fnl资料,对2009年6月9日-13日东北地区一次大范围持续性暴雨进行分析,表明本次过程是由东北冷涡的锋面过程引发,通过对东北冷涡的结构、涡度、热力条件和水汽收支进行进一步分析,结果表明:此次冷涡强降水的几个阶段属性不同,冷涡形成前,其南方的槽前气流和副高西北侧的气流辐合形成,是冷涡外降水,而后,逐渐转变为冷涡内的锋面降水;冷涡移动中其锋面与降水区相一致;水汽在强降水
利用卫星云图、多普勒雷达资料和NCEP 资料等,对2010 年9 月18 日20:00—19 日08:00 黄土高原发生的一次β中尺度大暴雨过程的大尺度环境场、中尺度影响系统以及触发机制等进行综合分析。结果表明:4 个中尺度径向速度辐合是β中尺度大暴雨的直接影响系统,列车效应是β中尺度大暴雨形成的原因之一;气压持续降低,配合2 min 平均风速急剧增大、而后风向突变,或配合先风向突变、而后2 mi
利用卫星云图、多普勒雷达资料和高空风等各种天气学资料,对2009 年6 月8~9 日广西、贵州、以及和湖南交界地带一次暴雨过程(图1 和表1)进行了综合分析.结果表明:暴雨是由中尺度对流复合体(MCC)东移、β中尺度强对流云团发展、以及二者合并造成的(图2);地面α中尺度低压带配合α中尺度纬向切变线的生成,为MCC 的东移发展、β中尺度强对流云团的发展、以及二者的合并创造了有利条件;地面能量比低值
基于GRAPES 模式,使用快速更新循环同化技术,对华东地区五种稠密资料(常规的探空资料TEMP、地面报SYNOP、飞机报AIREP、船舶报SHIPS 以及非常规的雷达VAD 风资料)进行同化分析,通过2008 年6 月、7 月和8 月三个月的连续试验以及个例分析来初步检验GRAPES_RUC 系统在上海的本地化情况。试验结果表明:GRAPES_RUC 系统对小雨和中雨的预报较好,对暴雨(大于50
本文利用WRF 模式基于三种不同的陆面过程方案(SLAB、NOAH 和RUC 方案)对2009 年7 月发生在江苏沿江及苏南地区包括沪宁高速公路在内的一次高温天气过程进行了对比模拟和分析。结果表明:(1)WRF 模式中耦合陆面参数化方案后的试验结果更接近实况,且模拟的高温天气过程对不同陆面方案的选择较为敏感;(2)SLAB、NOAH、RUC 三种陆面方案均较为真实地模拟出了梅村站气温变化趋势,但耦
本文利用常规资料和上海市自动站资料详细分析了2 月23 日早晨这次大雾过程的性质及形成原因。通过分析得到:这次大雾过程是在地面高气压场内有利的环境背景下局地产生的辐射雾和海雾的影响共同作用的结果,由于内陆的辐射作用明显,致使近海与沿岸温差增大,在南到东南风或偏东风的作用下,使海洋上的暖湿空气在近海及沿岸地区凝结冷却,形成海雾,同时也有利于海雾的加强,而且,风弱(小于1m/s)也是不利于大雾的消散的
利用2010年8月18日高后降水中山区层状云的飞机穿云观测资料,结合雷达、卫星云图及天气图等资料,详细分析了此次高后降水中山区层状云的宏观特征、微物理结构,并对降水形成机制进行初步探讨。结果表明:此个例由两层云构成,上层为冷云,下层云主要为暖云;冷层粒子图像显示主要以板状为主,平板柱状、柱状和霰粒为辅,冰粒子的聚合体在整个冷层都有出现;降水形成机制为播种-喂养机制,冷云中观测到丛集和淞附现象,其中