Dropout方法相关论文
为了避免传统机器学习算法进行人脸识别时存在的性能差、泛化能力弱等问题,现提出一种基于LeNet-5改进的卷积神经网络模型。该模型......
经典一维卷积神经网络模型诊断准确率不高且模型存在过拟合问题,难以满足轴承故障诊断时效性和准确率要求。鉴于此,提出一种基于改进......
深度学习方法以其特征提取和非线性数据建模的优势,受到越来越多研究者的关注。卷积神经网络作为深度学习中一种典型的结构,被广泛......
自从计算机技术得到长足发展,人类获取和存储信息的能力快速增强。这些信息来源复杂,且常常包含着噪声信息和大量冗余信息,利用这......
随着互联网的推进和发展,人们越来越倾向于通过网络购物方式购买商品。在过去几年里,商品种类急剧增加,如何在海量的商品信息中方......
针对深度卷积神经网络能够提取图像的高层特征并对图像进行有效表达.采用基于深度卷积神经网络的改进算法,设计了ZCNN网络结构对乳......