基于电纺技术的高性能氧阴极一体化制备负载

来源 :电源技术 | 被引量 : 0次 | 上传用户:vince_yang_666666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于静电纺丝技术制备的非贵金属氮碳材料应用于氧还原催化可实现催化剂的低成本大批量稳定生产.通过在气体扩散层上电纺接收引入硝酸铁和葡萄糖的聚丙烯腈纤维前驱体,并通过二次热处理得到了从制备到负载一体化的高性能氧阴极双层组件.通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)等表征证实葡萄糖对Fe原子的有效分散作用,并提升了体系的氧还原活性.该双层组件的催化层显示出与商业Pt-C电极相当的氧还原性能,半波电位为0.86 V,在1 mol/L抗甲醇测试中展现出优秀的耐甲醇性能.
其他文献
飞轮储能系统作为当前最受关注的储能系统之一,在轨道交通领域的优势较为显著.基于轨道交通领域中最为典型的城市轨道(地铁)及高铁系统,分析了飞轮储能技术的研究应用现状及发展趋势.介绍了飞轮储能的技术原理及其特点,基于两种典型轨道交通系统,梳理了飞轮储能技术的应用现状;分析并展望了飞轮储能技术在轨道交通领域的发展趋势,为行业研究或工程应用提供借鉴.
理论比能量高达2600 Wh/kg的锂硫电池已经成为锂电池研究热点,然而硫导电性不好、穿梭效应和锂化体积效应较大等问题阻碍了锂硫电池的产业化.将无定型多孔碳材料的高导电性和极性MoS2的固硫作用相结合改善锂硫电池的电化学性能.所得的S@MoS2/C在0.05 C和2 C电流密度下的放电比容量分别为1507和406.3 mAh/g,比S@MoS2在相同电流密度下的放电比容量(1400和345.7 mAh/g)更高.在循环性能测试中,S@MoS2/C容量保持率为46.9%,要高于S@MoS2(39.1%).因
以间苯二酚、甲醛、氧化石墨烯和三聚氰胺为原料,通过溶胶-凝胶法制备氮掺杂炭气凝胶,再对其进行CO2活化.用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、X射线光电子光谱法(XPS)和N2吸附等进行物理性能分析,用交流阻抗谱、恒流充放电测试等进行电化学性能测试.随着活化温度的提高,材料表面形成了密集的具有大量孔的内部相互交联的网络结构.当活化温度为900℃时,所制备的样品比表面积最高,由NCAG-4的1194 m2/g增大到CO2-900-NCAG-4的1849 m2/g.在经过活化以后,CO2-
采用大气等离子喷涂在粒子完全熔化条件下制备的Sr掺杂LaMnO3(LSM)阴极由于三相反应界面和贯通孔隙数量不足,其阴极阻抗较大.针对这一问题,通过在LSM微粉中加入20%(体积分数)亚微米石墨经团聚造粒获得LSM/石墨复合粉末,采用大气等离子喷涂在不同功率下制备了LSM阴极,采用扫描电子显微镜法(SEM)、能量散射光谱(EDS)及X射线衍射光谱法(XRD)表征了阴极的组织结构和相结构,研究了电弧功率对LSM阴极结构与性能的影响.大气等离子喷涂制备的阴极在经过800℃热处理去除石墨后呈现稳定的钙钛矿结构,
超临界CO2辅助制备了1-丁基-3-甲基咪唑三氟甲磺酸盐([BMIm][TfO])离子液体填充海泡石纳米棒的一维离子凝胶(IL@SNR),其与Nafion溶液共混后浇铸制得适应低湿度环境用复合质子交换膜.结果表明:加入适量IL@SNR的复合膜表面平整,力学性能、吸水性和质子传导性均得到提升;当IL@SNR含量为2%(质量分数)时,复合膜断裂强度、吸水率和80℃、80%相对湿度条件下质子传导率分别比同等条件下Nafion 212膜高出89.8%、73.2%和91.6%,基于该复合膜的单电池65℃下功率密度峰
高温聚合物电解质膜燃料电池(HT-PEMFC)使用富氢重整气代替纯氢进料时,其中高浓度CO(可达3×10-2)会导致电极毒化,使电池性能降低.采用Pt/C和PtRu/C催化剂制备多层结构阳极,研究了不同阳极结构在重整气进料时对电池性能的影响,优化得到最佳阳极结构(内侧Pt/C、外侧PtRu/C复合阳极).与传统Pt/C阳极相比,采用3×10-2 CO/H2进料,在160℃、0.5 A/cm2下,单体电池电压提高了48.2%(160 mV),并对该多层复合电极耐毒化机制进行了探讨.
研究了LiCoO2正极和氧化亚硅/石墨复合负极(LiCoO2-SiO/石墨)软包锂离子电池体系(LIBs)循环衰减机理,通过循环过程中电化学阻抗(EIS)、增量容量分析(ICA)、正负极形貌等分析了循环的影响因素.结果表明,硅基负极材料在完全嵌锂状态下的体积膨胀不仅会导致SiO负极的颗粒破碎,与电解液的副反应加剧,其膨胀应力还会造成电极的导电网络和粘结剂网络的破损,从而导致正负极活性物质利用率降低,降低SiO负极材料的循环性能.此外,SiO负极的充放电电压平台较高,与石墨材料复合使用时,容易造成电池正极的
提出了由金属-有机骨架材料(MOF)衍生的菱形十二面体NiO-NiCo2O4空心多面体结构包覆还原氧化石墨烯(rGO)作为硫载体的设计方案,极性金属氧化物可以有效吸附多硫化物,抑制穿梭效应,空心结构可以有效缓解电极反应过程中的体积变化,rGO的引入可有效提高电极材料的电导率,促进正极硫的充分反应,进而提高硫的利用率,提高电极材料的电化学性能.在0.5 C电流密度下,S/NiO-NiCo2O4-rGO复合材料循环100次后放电比容量为591 mAh/g,在1 C电流密度下,S/NiO-NiCo2O4-rGO
分别以普通铝箔、腐蚀铝箔和微孔铝箔为集流体,以活性炭材料为电极片活性物质,研究不同的浆料涂布厚度及集流体种类对单体超级电容器内阻、比电容和比能量的影响.用交流阻抗谱、恒流充放电和循环伏安测试等进行电化学性能表征.实验结果表明,电极片的涂布厚度相同时,微孔铝箔的活性物质负载量最大,并且其内阻最小、比电容最大,说明微孔铝箔与活性物质表面的接触更为紧密;而对于同一种集流体,当涂布厚度为90μm时,组装的超级电容器的比电容最大.
为了提高光伏发电系统短期输出功率的预测精度,建立了基于改进鸡群算法优化支持向量机(ICSO-SVM)的预测模型,在鸡群算法中引入动态惯性权重和自适应因子加强算法的寻优能力.通过计算得到对光伏发电影响较大的因素为太阳辐射强度、大气温度和相对湿度;计算出待预测日期和历史日期之间的关联度,确定预测所需要的训练样本并对模型进行训练;利用训练好的预测模型对预测地区秋季平稳天气和突变天气的光伏阵列输出功率分别进行预测.仿真实验表明:该模型的平均绝对百分比误差和均方误差与改进前相比分别降低5.547%和0.080,与基