激光熔覆碳纤维增强316L不锈钢的显微组织和耐磨性

来源 :中国激光 | 被引量 : 0次 | 上传用户:linco87
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用激光熔覆技术制备了碳纤维增强316L不锈钢,研究了扫描速度对碳纤维增强316L不锈钢显微结构、显微硬度和耐磨性的影响。结果表明:激光熔覆316L不锈钢由γ-Fe相组成,而激光熔覆碳纤维增强316L不锈钢主要由M23C6、γ-Fe和α-Fe组成,其中M23C6均匀地分布在γ-Fe和α-Fe树枝晶间;随着扫描速度增大,枝晶臂间距减小,显微硬度先增加后减小,耐磨性先增强后降低;当扫描速度为12 mm/s时,激光熔覆碳纤维增强316L不锈钢的耐磨性最好,相对于未加碳纤维的激光熔覆316L不锈钢提高了约25.3%。
其他文献
利用蒙特卡罗数值模拟方法研究了海水散射引起的激光脉冲时延效应,分析了海水类型、传输距离、收发器参数等对激光脉冲时延的影响。数值仿真结果表明,在清澈海域,激光脉冲的时延展宽随传输距离的增加变化不明显,且在传输距离小于50 m时,信道时延小于0.5 ns,收发器参数对信道时延的影响小;而在浑浊海域,信道散射引起的多径效应会使接收功率随接收孔径的增大而升高,信道时延也会随之增大。当接收视场角小于90°时,其对接收功率和时延展宽的影响大;当视场角为90°~180°时,其对接收功率和时延展宽的影响小。
We demonstrate a polarization insensitive arrayed-input spectrometer using echelle diffraction grating (EDG) for hyperspectral imaging. The EDG consists of 65 input waveguides and 129 output waveguides, allowing spectral measurements of 65 image pixels at
AlN晶体中的氧杂质会严重影响晶体性能。因此, 氧含量的控制一直是AlN晶体生长工艺中的热点和难点。为了减少AlN晶体中的氧杂质含量, 通常在长晶之前使用粉料高温烧结工艺去除大部分的氧杂质。使用XRD及EGA等检测方法, 对不同烧结工艺下AlN烧结过程中坩埚盖处的氧杂质沉积行为及其规律进行了对比研究。研究发现, 使用低温(900~1100℃)真空保温与1500℃的氮气保护下保温相结合的方法可以极大促进氧杂质在坩埚盖处的前期沉积。在氮气保护环境下进一步提升烧结温度至2000~2100℃并经过一段时间的保温后
The distribution of a modulated squeezed state over a quantum channel is the basis for quantum key distribution (QKD) with a squeezed state. In this Letter, a modulated squeezed state is distributed over a lossy channel. The Wigner function of the distrib
假设量子阱是类W势阱,应变效应表现为势阱底部出现了类抛物线鼓包。在量子力学框架下,讨论了应变效应对输出波长的影响。结果表明,在应变作用下,量子阱出现了能级分裂,正是这种分裂为高性能量子阱光学器件的研制提供了更大的设计空间,为量子阱激光器件输出波长的调节提供了理论基础。
分析了用于自适应光学波前补偿实验的对流湍流池折射率和光强起伏的空间、 时间结构, 建立了平均速度很小或等于零时的相关函数, 讨论了速度起伏对相关的扩散作用。 数值计算和实测的结果表明: 速度起伏不仅使时间相关减小, 而且使频谱的内尺度减小。
提出了一种基于双波长法补偿空气折射率的激光追踪测量系统的ZEMAX仿真分析方法。利用光学器件对偏振光的变换特性来建立系统的能量模型, 建立了基于ZEMAX软件的光学系统模型, 分析了光学系统中非理想的光学元件性能对干涉条纹对比度的影响。仿真分析结果表明, 当光学系统分光部分、追踪部分和接收部分的分光镜的分光比分别为2∶8、6∶4和5∶5时, 条纹对比度达到0.99, 光学系统的干涉效果最好。光学系统中的偏振分光镜在非理想条件下, 对干涉信号的条纹对比度的影响较小。
光学薄膜的缺陷是光学系统性能提高的瓶颈, 一直是实验和理论研究的重点。选取电子束蒸发工艺制备光学多层膜的典型缺陷, 用扫描电子显微镜(SEM)测试了表面缺陷的形貌、成分。膜料选取:TiO2,SiO2。结果表明, 结瘤缺陷在薄膜表面呈球冠状, 成分为Ti,Si的氧化物; 膜料喷溅颗粒未被完全包覆, 或者不稳定吸附物崩落后形成的缺陷为凹坑状, 成分为Ti, Si的氧化物, 但是存在明显的Ti偏析; 有一种表面粘附缺陷呈现不规则胶体状, 碳含量明显偏高, 为有机物; 另一种粘附缺陷为带棱角块状, 成分为Ti,