热压温度对TC4/Ta层状复合材料界面元素扩散行为及微观结构的影响

来源 :钢铁钒钛 | 被引量 : 0次 | 上传用户:allenhuqiqi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在不同温度下通过高温热压复合制备了TC4/Ta/TC4层状金属复合材料(LMCs),并讨论了界面元素扩散行为、微观结构随热压温度的变化关系.结果 表明,在热压和保温过程中两组元元素在界面处发生了明显的扩散行为,两组元实现了良好的冶金结合.高温热压促进了Al、V、Ti、Ta各元素在界面处的扩散,其扩散程度显著影响了界面附近的显微组织.每种元素的扩散深度与原子半径紧密相关,随着原子半径减小,扩散行为发生的更为强烈.元素扩散行为导致界面附近钛基体的相变温度降低,在低于TC4相变温度的950℃出现了网篮组织,随着与界面距离的变化呈现不同的微观组织形貌.
其他文献
钛及钛合金综合性能优异,但由于高温活性强导致焊接氧化问题严重,特别是在很低的固态温度下仍然吸收气体影响焊接接头质量,因此需要严格的焊接保护措施.在分析了钛合金的氧化机理及特性的基础上,系统总结了焊接过程中的各种防氧化保护措施和具体技术.详细介绍了钛合金长直焊缝、环形焊缝、空间不规则焊缝以及增材制造四种典型过程的防氧化保护问题,主要的防护措施有保护拖罩、封闭式充氩环境以及强制冷却三大类.针对钛合金长直焊缝局部气体保护,一般形式为保护拖罩结合背面保护气槽以及水冷措施;对于环形焊缝的背面保护方式,可以采用背面拖
钛合金因具有高比强度、高比模量、耐腐蚀、耐低温、无磁等性能特点而被广泛应用.然而,与传统钢铁材料相比,钛合金存在弹性模量低、耐热性能不足、耐磨性差等局限,阻碍其在航空航天、兵器行业等领域的推广应用.与钛合金相比,钛基复合材料可将基体钛合金高强塑性与增强体高模量、高耐磨的优势相结合,具有比钛合金更高的弹性模量、耐磨性及高温性能,从而满足一些高承载、抗冲击、高耐磨和高温抗氧化等极端工况条件下的使用要求.从钛基复合材料发展历程出发,对钛基复合材料耐磨性研究进展加以概述,主要介绍了钛基复合材料耐磨性表征方法和摩擦
高炉冶炼钒钛矿过程产生了大量含钛高炉渣,攀钢针对渣中钛资源的回收利用成功开发出了高温碳化-低温氯化工艺,但是该工艺存在碳化渣磨矿和氯化尾渣利用等技术性难题,还需要继续探索绿色、经济的处理方法.针对高温碳化过程中Ti(C,N)弥散分布的问题,提出高温碳化过程加铁富集Ti(C,N)的思路,试验考察了铁/渣(质量比)、生铁添加批次、保温富集时间及预配铁量等因素对富集过程的影响.结果 表明,熔渣中Ti(C,N)能聚集在熔铁表面并随其下沉至坩埚底部,水淬后附着有Ti(C,N)的铁块可与残渣实现自然分离,按铁/渣为1
在高纯氩气气氛下,在CaCl2熔盐中电解高钛渣制备金属钛,研究了成型压力与阴极片孔隙率的关系以及对电解过程的影响,并采用XRD、SEM等分析手段对阴极片及电解后的物相和微观形貌结构进行表征.结果 表明:成型压力对阴极片孔隙率有直接影响,随着成型压力升高,阴极孔隙率下降;阴极片的孔隙率直接影响电脱氧过程,适当的孔隙率有利于形成中间产物CaTiO3和提高电还原速率.4 MPa压制的阴极1050℃烧结2h,孔隙率为34.79%,电解12h产物氧含量降低至1.75%,钛含量为95.72%,此时阴极片的电化学性能较
以热轧态Ti80合金作为基材,在Gleeble-3500热模拟测试机上进行高温压缩测试,变形温度为800~1000℃,应变速率为0.01~10 s-1,总变形比例为75%.结果 表明:Ti80钛合金在800~950℃时处于α+β两相区,其流变行为受变形温度和应变速率的显著影响.Ti80钛合金的加工硬化主要来自于初始α相中位错密度的提高,变形温度的提高会导致α相的减少,流变峰值应力不断降低,过高的应变速率会导致α相内位错运动受阻.Ti80钛合金中的初始α相更容易发生动态回复和动态再结晶,随着变形温度的提高,
采用扫描电镜(SEM)和金相显微镜(OM)研究了固溶热处理对Ti6Al4V ELI钛合金显微组织的演变规律,以及显微组织对力学性能的影响关系,结果表明:随着固溶温度的升高,Ti6A14V ELI钛合金初生αp相含量降低,片层α相厚度和β晶粒尺寸均增加;钛合金强度和塑性均随着固溶温度的升高而降低,在952℃固溶后时效,抗拉强度可达915 MPa,延伸率16.8%,断裂韧性仅为84 MPa·m1/2;在997℃进行固溶后时效,钛合金抗拉强度降低至861 MPa,延伸率9.6%,断裂韧性达115 MPa·m1/
激光熔丝增材制造技术在航空航天、海工船舶等领域应用前景广阔.针对TC4-DT材料,在初步优化的工艺参数下,通过激光熔丝增材制造技术制备金属试样,并对试样进行固溶-强化热处理,研究激光熔丝沉积态及热处理态的微观组织、缺陷及室温拉伸力学性能.研究发现,激光熔丝TC4-DT成形态组织为粗大的柱状晶及针状α\'马氏体,热处理后转变为等轴晶与柱状晶的双相组织,马氏体分解为针状α+β双相组织,固溶-强化热处理后拉伸力学性能与锻件水平相当.
分别以Ni+Ti元素混合粉末和NiTi预合金粉末为原料,采用选区激光熔化工艺打印成形.重点研究了在相同打印工艺参数下原料粉末对成形件致密度、物相组成、显微组织、显微硬度的影响,从而反馈说明所用打印粉末对成形件性能的影响.结果 表明:在相同打印工艺参数下,整体上NiTi预合金粉末成形件的致密度较高,而Ni+Ti混合粉末成形件的显微硬度较高.对于同一种粉末,随着能量密度的增大,成形件的致密度先增大后减小,而显微硬度先减小后增大.NiTi预合金粉末成形件有致密的微观结构且相分布均匀,但存在少量孔隙.Ni+Ti混
以氢化钛粉为原料,采用粉末冶金法-热等静压法制备高温钛合金Ti-1100,并进行了等温压缩试验,通过压缩样品应力应变曲线进行压缩变形行为分析,再结合Arrhenius双曲正弦本构模型建立热压缩本构方程.通过应力应变曲线分析,发现应变速率在0.01 s-1时,所有样品在加工硬化后均表现出稳态流变行为;而应变速率为1 s-1、温度在900℃或1000℃时,流变应力随着变形达到稳态流变状态后,呈增加趋势.应变速率为0.01、0.1、1 s-1时的热压缩变形激活能分别为96、165、232 kJ/mol.硬度测试
采用粉末冶金添加造孔剂法制备多孔Ti-Nb合金,研究不同Nb含量对合金物相结构、微观孔隙形貌、孔隙率、抗压强度及耐腐蚀性能的影响.研究结果表明:多孔Ti-Nb合金具有α和β双相组织,随Nb含量的增加,材料中的β相含量逐渐增大,Nb含量为25%~ 30%时材料的孔隙大小和分布较均匀,平均孔径为300 μm左右;随Nb含量的增加,材料的孔隙率随之增大,径向收缩率和抗压强度逐渐减小,耐腐蚀性呈先增大后减小趋势,在Nb含量30%时材料的耐腐蚀性最强,其孔隙率为33.6%,径向收缩率为7.3%,抗压强度为130 M