基于SIFT的视觉单词在人脸识别中的研究

来源 :科学技术与工程 | 被引量 : 5次 | 上传用户:JK0803_fanti
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,基于视频的人脸识别吸引了很多人的关注,同时,视觉词袋(BoWs)模型已成功地应用在图像检索和对象识别中。提出了一种基于视频的人脸识别的方法,它利用了视觉单词,在经典的视觉单词中,第一次在兴趣点提取尺度不变特征变换(SIFT)的图像描述;这些兴趣点由高斯差分(DoG)检测,然后基于k均值的视觉词汇生成,使用视觉单词的索引以取代这些描述符。然而,在人脸图像中,由于面部姿势失真,面部表情和光照条件变化,SIFT描述符不是很好。因此,使用仿射SIFT(ASIFT)描述符作为人脸图像表示法。在Yale
其他文献
线性判别分析(LDA)是人脸识别系统中用来降维的主要技术之一,可以运用于整个人脸图像,但却受到了小样本(small sample size,SSS)问题的限制。通过引入权值的概念,关联加权LDA(RW-LDA)方法有效地改善了小样本问题,但是,它的分类效果却不是很好。为了解决这个问题,提出了基于HAAR小波的关联加权LDA(related weighting LDA based onHAAR wa
利用分布式传感器网络以及数据融合方法来提高探测系统的检测与定位精度正在成为研究的热点。提出了一种应用于分布式传感器网络中的数据融合算法,通过对各个传感器节点的定位