论文部分内容阅读
基于差异的半监督学习属于半监督学习和集成学习的结合,是近年来机器学习领域的研究热点.但相关的理论研究较缺乏,且都未考虑存在分布噪声的情况.文中首先针对基于差异的半监督学习的特点,定义一种分类噪声和分布噪声的混合噪声(HCAD).其次给出算法在HCAD噪声下的可能近似正确(PAC)理论分析及其应用实例.最后基于投票边缘函数,推导出在HCAD噪声下多分类器系统的泛化误差上界,并给出相关证明.文中开展的理论研究可用于设计基于差异的半监督学习算法及评估算法的泛化能力,具有广阔的应用前景.