教师们眼中的曹俊老师

来源 :语文教学通讯 | 被引量 : 0次 | 上传用户:lyfwgc2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
曹俊,从事高中语文教育教学工作32年,其中在一线任教24年,任太原市教研科研中心教研员工作至今8年。教学追求情趣化,善于激活学生思维,富有特色;教研活动重实效、有创意。深受同人欢迎;师带徒成绩突出,所带徒弟在全国或省市课堂教学大赛中均有奖项获得。现兼任太原市中语会秘书长,学科职称评审委员会委员,中学语文学科导师团导师;系山西省首批学科带头人,太原市首批名师培养认定对象;曾被评为山西省课改先进个人。山西省教科研先进工作者,连续三届被评为太原市导师团优秀导师。近5年来,发表教学论文20余篇,主编教学书籍《诗文诵读》、《新教案》、《新学案》等6种。 Cao Jun, engaged in high school Chinese education and teaching work for 32 years, of which the first line taught for 24 years, he served as teaching researcher of the Taiyuan Teaching Research Center for 8 years. Teaching pursuit of interest, good at activating student thinking, full of characteristics; teaching and research activities are practical and creative. He was deeply welcomed by his colleagues; the teachers and the students had outstanding achievements, and the apprentices with the awards were awarded in the national or provincial classroom teaching competitions. He is also the secretary general of the Taiyuan Chinese Language Association, a member of the Judicial Title Evaluation Committee, and a tutor of the Chinese language teachers of the middle school; he is the first batch of academic leaders in Shanxi Province and the first batch of certified teachers in Taiyuan; he has been appraised as the advanced course in Shanxi Province. personal. The advanced worker of teaching and scientific research in Shanxi Province has been rated as the outstanding tutor of the supervisor team of Taiyuan City for three consecutive times. In the past five years, he has published more than 20 teaching papers, and he has edited six teaching books such as “Poetry Reading,” “Protestant Case,” and “New School Case.”
其他文献
现实还是梦境?    有一天,一个朋友和我开玩笑说:“如果你把你知道的秘密都说出去,恐怕直接就进医院了。”他是说我处理大量危机公关,知道太多不同企业的秘密。  不过,真相往往是不为人知的,包括我在内。虽然身处众多社会热点事件的中心,我仍然不认为我了解真相,我怕我真的说出我知道的事情,也会被当事人当做笑柄,笑我无知,还要笑我自以为是。所以,不仅是出于职业道德,更是出于不要让自己成为笑柄,这些所谓的“
“含参不等式”相关的题目从解题目标上看,基本上有三种,即求参数的取值范围,使得含参数的不等式恒成立、能成立或恰成立.  本文就结合实例谈谈这类问题的一般求解策略.    一、不等式的恒成立、能成立、恰成立等问题的操作程序  (一)恒成立问题  若不等式[f(x)>A]在区间[D]上恒成立,则等价于函数[f(x)]在区间[D]上的最小值大于[A];  若不等式[f(x)A]成立,即[f(x)>A]在