论文部分内容阅读
提出了一种基于目标区域分割的自适应运动目标跟踪算法。该算法通过K-均值聚类,将目标分割为多个子区域,根据子区域颜色特征及其分布提出了一种新的目标模型,并给出模型相似性测度准则,从而将目标模型更新问题简化为区域特征的更新,提高了模型的稳定性。同时在跟踪过程中,利用相似性测度检测目标遮挡程度,根据遮挡程度自适应地调整卡尔曼滤波器的参数和模型更新过程,提高了在遮挡情况下算法的鲁棒性。分析和实验表明,新算法能够在真实场景中准确、实时地跟踪目标,是一种有效的视频目标跟踪算法。