论文部分内容阅读
为提升飞轮的可靠性,本文对飞轮故障诊断技术进行了研究。通过对基于数学解析模型与基于智能计算的故障诊断方法的对比研究,提出了一种基于神经网络的混合故障诊断方法。该方法首先使用数学解析模型与原系统输出的差值作为一级残差;而后利用该一级残差以及系统可测状态对神经网络进行训练;然后使用混合模型输出的二级残差对系统故障进行检测;最后以飞轮注入母线电压以及电枢电流故障对该方法进行验证:在存在母线电压故障工况下混合模型避免了解析模型电流估计的发散问题,与单神经网络模型相比最大跟踪误差降低了44%。在存在电流故障时,不同