论文部分内容阅读
针对学习资源的个性化推荐,提出了一种基于用户影响关系的协同过滤推荐方法,使用传统协同过滤推荐采用的用户项目评分信息,通过挖掘用户时序交互评论和回复行为数据发现用户之间的相互影响关系,从而优化用户兴趣矩阵,在此基础上改善基于用户的协同过滤方法进行推荐。在数据集上的实验结果表明,通过利用用户之间时序交互行为数据,挖掘隐藏的用户影响关系信息可以有效提高预测的准确度。