论文部分内容阅读
线性分类器由于其简单性和易扩展成非线性分类器的特性,使其成为统计模式识别中最常用的方法之一.正则化的HoKashyap线性分类算法(MHKS)采用了支持向量机最大化间隔的思想.现有的线性分类器大都是针对向量模式的,要应用于矩阵表示的模式,如人脸图像等必须首先将矩阵模式转换成向量模式.但如此至少会带来3个不足:①原有矩阵模式的空间或结构信息可能会遭到破坏;②由于权向量的维数等于输入模式的维数,当输入模式维数很大时,权值的存储空间相应地会很大;③对于大维数的模式,当样本数不多时,利用线性分类器易导致过拟