SL(n,C)中的一些特殊可解子群及应用

来源 :沈阳师范大学学报:自然科学版 | 被引量 : 0次 | 上传用户:fngdi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Fuchs方程在许多物理问题中有着广泛而重要的应用,所以判定给定的Fuchs方程的可积性及解的性质在理论与应用中都有意义.根据Khovanskiy定理,Fuchs方程的可积性判定问题可转化为对其单值群的计算并判断其可解性,但由于这方面理论及计算的发展尚不完善.到目前为止,对任意给定的Fuchs方程,并不存在行之有效的方法求出单值群以及判断其可解性.给出了SL(n;C)中的几类特殊可解子群,并应用于Fuchs系统.由Fuchs方程的单值群的可解性与其可积性的关系,得出结论,若Fuchs系统解的Riemann
其他文献
2014年9月30日,由南开大学柯平教授担任首席专家的国家社会科学基金重大项目“促进我国基本公共文化服务标准化与均等化研究”(批准号:14ZDA050)在南开大学举行开题会。南开大学
mKdV方程作为描述非谐调晶格中声波的一个模型方程,可用来研究尘埃等离子体中的尘埃孤波,非线性光学中的波动问题等,因此对mKdV方程的解的研究具有重要的实际意义.主要研究了