论文部分内容阅读
为了有效检测移动端的未知恶意软件,提出一种基于机器学习算法,并结合提取的具有鲁棒性的网络流量统计特征,训练出具有未知移动恶意网络流量识别能力的检测模型;该模型主要包括Android恶意软件样本数据预处理、网络流量数据自动采集以及机器学习检测模型训练;通过对不同时间节点的零日恶意软件检测的实验,验证模型的有效性。结果表明,所提出的方法对未知恶意样本的检测精度可以超过90%,并且F度量值为80%。