论文部分内容阅读
社团划分是研究复杂网络结构与功能之间关系的基础,提出了一种基于局部稠密度的社团划分算法。算法首先计算网络中节点的局域密度,从局域密度最大的节点v开始,找出以节点v及其邻居如果αlocal(vi)≥γin则将其设为初始社团S。首次定义了节点的入团率β,并且使用整体和单个入团的方式将节点加入到初始社团中,直到αlocal〈γout时算法停止。然后再使用内部连接P来检测社团划分的效果,并将错误划分的节点重新归类。把这个算法用在三个社会网络中,都得到了正确的划分。并用MATLAB仿真结果表明:划分出的社团内部连接