论文部分内容阅读
随着大量的科研论文出现在互联网上,从中精确地抽取论文头部信息和引文信息显得十分重要。提出了基于本体相似度的信息抽取方法,该方法的关键在于用本体相似度判定某个行本体是正例还是反例,然后通过主动学习选择最有可能包含抽取信息的行本体集,再充分利用本体的语义推理能力找到正确的片断。从论文中提取头部信息和引文信息为进一步的语义检索和语义存储奠定基础。测试数据集的实验结果显示该方法比其他方法具有较高的准确率。