论文部分内容阅读
在多传感器多目标跟踪系统中,经常有来自同一目标的量测到达融合中心时存在时间先后顺序上的混乱,被称为时间错序量测(Oosm);通常,现有的跟踪算法都是假设理想目标的观测值不混乱;现实中,可能错过的目标探测随意混乱,因而,滤波器不得不处理起因未知的量测,耶么针对顺序量测的传统滤波器,例如KF。在此就不能直接使用;通过基于一些特殊矩阵非单一假设的经济存储和能效估计介绍了全局最优Oosm刷新算法,并结合概率数据关联PDA到Oosm刷新算法中;仿真结果显示Oosrn刷新的PDA滤波器在性能上优于忽略Oosm的PDA