论文部分内容阅读
以Zernike多项式为基函数,利用Gram-schmidt正交化方法推导出在环扇区域内正交的一组多项式;通过对比发现,同阶的新多项式与Zernike多项式在各自正交的区域内具有相似的分布和物理意义;分别用Zernike多项式、环域正交多项式、外接圆多项式和环扇域正交多项式拟合环扇区域内一组给定的波面畸变采样数据,并仿真加入不同扰动时各组拟合系数的变化情况,得到环扇域正交多项式的拟合系数最为稳定,有最佳的抗扰动能力。