论文部分内容阅读
神经网络的学习算法通常是采用梯度下降法,此方法容易陷入局部极小而得到次最优解。另外,对于有些应用来说,用于训练网络的样本的输入/输出数据无法精确给出,而只能以一定的范围的形式给出,这就给传统的神经网络带来了困难。该文提出了一种基于区间优化的神经网络学习算法,可以很好地解决上面所提到的传统神经网络学习算法的缺点。