论文部分内容阅读
为解决KSVM分类器错分及拒分区域问题,提出了一种新的结合分类信息增益权重的改进KSVM分类器(classifica-tion information gain weight KNN&&SVM,CIGWKSVM)。采用熵期望值度量训练样本的复杂程度、特征集针对分类的不确定性以计算特征集的分类信息增益值,并融合特征分布信息定义训练集样本各条件属性在分类过程中的CIGW权重。在此基础上,设计围绕加CIGW权的欧式距离测度进行聚类处理,并优化选择错分、拒分区K近邻代表点的CIGWKSVM分类器。从理论上比较分析