论文部分内容阅读
遥感影像数据因其固有的不确定性与复杂性,导致传统的无监督分类算法难以对其准确建模。基于模糊集理论的模式识别方法可以有效地表达数据的模糊性,其中二型模糊集能更好地刻画类间多重不确定性,而半监督法可以利用少量先验知识来解决算法对数据的泛化性问题,因此提出一种基于半监督的自适应区间二型模糊C均值遥感影像分类方法(SS-AIT2FCM)。首先,结合半监督和进化论思想,提出一种新的模糊权重指数选取方法,以提升自适应区间二型模糊C均值聚类算法的鲁棒性与泛化性,使算法更适用于光谱混叠严重、覆盖面积大、地物丰富的遥