浅谈数学试卷的考后讲评策略

来源 :数学学习与研究 | 被引量 : 0次 | 上传用户:xtljj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】 试卷讲评是指导学生反思学习过程的成败得失,找出其原因,并对已有知识进行一个再处理的过程. 本文从试卷讲评的时效性、统计数据的真实性、试卷讲评时的心态、处理好“舍与得”的关系、试题的一题多变、书写的规范性等六个方面论述了数学试卷讲评时应注意的问题.
   【关键词】数学试卷;心态;讲评策略
  
  数学试卷的考后讲评是数学教师日常教学中的一个重要组成部分,是一种特殊的复习课. 这种课对于学生澄清一些模糊的概念,对错误的数学思想“拨乱反正”,完善和巩固数学基础知识和基本技能有着举足轻重的作用. 那么如何做好一堂试卷的考后讲评呢?我根据多年的摸索和实践,在这里发表一些粗浅的看法,希望与同行们一起探讨,一起成长.
  1. 试卷讲评要有时效性
  根据艾宾浩斯遗忘规律,人在记材料后的48个小时之后遗忘最多,超过48小时,再复习起来就“事倍功半”了. 一次考试过后,应该是学生刚考完,对试题感触很深,尤其是对于那些只需再“跳一跳,就能摘到桃子”的试题,记忆犹新,如果这时老师对测验的结果及时评定和试题及时讲评,学生的印象就会非常深,从而能更好地理解数学,提高解决问题的能力. 否则,拖的时间越长,学生渴望知道试题答案的热情就会逐渐消退,以后再讲评时效果则大打折扣. 所以我认为,数学试卷的讲评最好要能与考试连贯,一气呵成.
  2. 讲评前要认真阅卷,系统地收集好各种数据,做好统计的准确性
  认真阅卷,除在评分时要做到客观公正外,还要全面分析试题的难易程度,知识的覆盖面,知识以什么载体呈现的,试卷的区分度,在同类班级中的排名情况等等,教师都要做到“心中有数”. 阅卷完后,教师还要做好学生的分数统计,为课堂上的有的放矢获取有价值的信息.
  3. 要端正好试卷讲评时的心态
  每一次考试,学生做的答案总会有一些让老师心里不满意的地方. “允许出错,并发现错误中的合理因素,是一件体现教师的专业素养和教育、心理理论素养的事情. ”学生最反感的是老师每讲一道题时都怒气冲冲地说:“这个知识点我说了是很重要的,怎么还不知道?”,“这种题目要这样做,不能那样做,讲了这么多遍,x都知道了!”当这种老师在台上表现得痛心疾首时,台下的学生早已经跟他筑起心灵的“防火墙”了,哪还有心思听老师讲课? 现代教师一定要脱下权威者的外套,与学生建立起平等合作的伙伴关系,尊重学生的人格. “亲其师”,而后“信其道”,所以老师讲评的时候,要记得发现和肯定学生的成绩,实事求是的表扬和鼓励优生,激发他们学习数学的积极性,对差生也不要冷嘲热讽,“你看他总是用‘像牛顿一样’的眼光,他就会真的越来越像牛顿”(尹建莉《好妈妈胜过好老师》),不要搞得考试一场,批评一场,教室像战场.
  4. 试卷讲评时要把握好“舍与得”的关系
  最忌讳老师一题一题从头到尾对答案,学生一题一题抄答案,或者老师“做题给学生看”,一堂课下来,手都酸了,然后还加上一句:“课堂上没时间,你们课后照答案去消化吧”. 如果这样的话,那还倒不如直接将答案去复印,每名同学发一份,还省了抄写的时间. 一般情况下,老师们不要这样做. 但在课堂上,对试题逐一讲评,时间上不允许,也没有这个必要. 因为平时的每一次考试,都会侧重于几个知识点,老师只需要将整套试题归纳一下,针对学生考试中出现的普遍性的问题,找到错误的源头,然后从知识点里挑一、两个典型题来讲,“对症下药”,以点代面,那样效果会事半功倍. 但“抓到篮子里的未必都是好菜”,作为一个好老师,还要知道在什么层次的班级就该讲什么难度的题,对于你的学生,你应该很清楚他们的知识缺陷、能力增长点在哪里,哪些题目讲了有用,哪些讲了等于是做无用功,需要老师准确把握好“舍”的度. 一道试题讲评完,课堂气氛热烈,学生思维活跃,这才算基本成功.
  5. 试卷讲评时要“借题发挥”
  数学被誉为是“思维的体操”,它的正确答案虽只有一个,但解题方法可以有多种. 学生考试时,不可能一题多解,但事后老师讲评时,可以对题目的条件进行变换,或者逆向思考,或者类比,或者探索结论,从而达到一题多变、一题多解的精彩效果.
  例 若关于x的方程4x + a·2x + a + 1 = 0有实数解,求实数a的取值范围.
  解法一 令t = 2x(t > 0),则原方程可化为t2 + at + a + 1 = 0(1),问题转化成了方程(1)在(0,+∞)上有实数解,求a的取值范围.
  解法一的思路是换元后转化为一元二次方程方程根的分布问题,解法二换元后转化为利用均值不等式求函数的值域问题,解法三换元后转化为利用导数求函数的值域问题. 这三种思路恰都是高考中永恒的话题,放在一起,虽只讲解了一题,但复习了一大片,极好地巩固了学生的基础知识,提高了解题能力,以后遇到相近的或类似的题,不但会解,还会从多角度去解,以一当十、以少胜多,摆脱题海战术. 数学基本技能的不断获得在于对问题本质的认识深化.
  6. 老师讲评时要规范解答题的格式
  “会而不对,对而不全”是我们学生的通病,这一现象在立体几何的证明中尤为突出,数学解题中强调严谨的步骤和逻辑,解答过程完备、没漏洞,这应是学生孜孜不倦努力的方向. 老师在讲台上一定要作好这一表率.
  注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
其他文献
【摘要】 数形结合,主要是指数与形之间的一一对应关系. 数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过抽象思维与形象思维的结合,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.   【关键词】 数形结合    数与形是数学中最古老、最基本的两个研究对象,它们之间存在着对立统一的辩证关系,一方面各自独立存在于自己的领域,另一方面两者又完美地结合在一起,在
期刊
南朝时期因朝代更换频繁,帝王出身寒门,使整个社会形成注重个人利益、注重生活享受的时代特征,直接影响士人的出仕目的与享乐心态。而齐梁时代既是南朝社会的缩影,也是我国形式主
【摘要】在高职高专类院校不断扩招的形势下,为了确保高等数学的教学质量,需要在原有教学模式基础上进行改革,使其适应目前的高职高专教学.本文简要分析了目前高职高专类院校高等数学的教学现状,并对高职高专的高等数学教学的改革提出了几点建议.  【关键词】高职高专;高等数学;教学改革  高职高专类院校的办学宗旨是培养高等技术应用型人才.而数学是培养各类人才共同需要学习的基础课.我国高职教育发展历史相对较短,
有些数学习题,所给的并不是函数,如果按常规来做,有一定的难度,而且过程复杂,这时分析所给题的特点,若能换个角度,构造一个函数,可能会起到事半功倍之功效,不仅能使学生感受到数学的美妙以及构造法的神奇,而且更能激发起学生探索的意识和创新欲望,突破思维的常规,使思路更简捷、明快.下面就妙构函数f(x)=x+ax(a>0)的形式,巧用f(х)在(0,a]上为减函数,在[a,+∞)上为增函数这一单调性在证明
【摘要】分段函数是一类表达形式特殊的函数,是新课程高中数学的一个新概念,它能较深刻地考查函数的概念及性质等知识.分段函数在课本上仅以一个例题出现,并没有作深入的说明,但是在近几年高考中已成为函数中考查的热点.笔者对近几年高考考查分段函数的相关内容进行归纳并整理如下.  【关键词】新课程;高考;分段函数  1分段函数求解析式(或作图)  例1 (2007年安徽卷文7)图中的图像所表示的函数的解析式
斌椿的《乘槎笔记》与两部纪游诗是晚清关于西方最早的亲历记述。斌椿本意欲客观地记述西方,但他将对西方文化的叙述不自觉变成了中国文化的自我欣赏,无形中消解了西方文化的客
变式教学在中国由来已久,并被广大教师自觉不自觉地应用着,是中国数学教育的特征之一,对提高数学教学质量有着十分重要的作用.本文结合笔者在教学工作中的实践经验谈几点对于变式教学的思考和体会,以供各位同行参考和指正.    一、关于变式教学  从1977年开始,上海市青浦县顾泠沅小组进行了大面积提高教学质量的教改实验,历时14年,他们归纳出青浦县大面积提高教学质量的教学结构,这种结构包括具有层次性的五个