论文部分内容阅读
很多数据挖掘方法只能处理离散值的属性,因此,连续属性必须进行离散化。提出一种统计相关系数的数据离散化方法,基于统计相关理论有效地捕获了类属性间的相互依赖,选取最佳断点。此外,将变精度粗糙集(VPRS)模型纳入离散化中,有效地控制数据的信息丢失。将所提方法在乳腺癌症诊断以及其他领域数据上进行了应用,实验结果表明,该方法显著地提高了See5决策树的分类学习精度。