论文部分内容阅读
在中文文本分类任务中,针对重要特征在中文文本中位置分布分散、稀疏的问题,以及不同文本特征对文本类别识别贡献不同的问题,该文提出一种基于语义理解的注意力神经网络、长短期记忆网络(LSTM)与卷积神经网络(CNN)的多元特征融合中文文本分类模型(3CLA)。模型首先通过文本预处理将中文文本分词、向量化。然后,通过嵌入层分别经过CNN通路、LSTM通路和注意力算法模型通路以提取不同层次、具有不同特点的文本特征。最终,文本特征经融合层融合后,由softmax分类器进行分类。基于中文语料进行了文本分类实验。实